首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate absorption of compounds across the membrane via a transcellular route, the permeability of peptide derivatives and related compounds was measured by the parallel artificial membrane permeation assay (PAMPA). The permeability coefficients by PAMPA were analyzed quantitatively using classical QSAR and Volsurf approaches with the physicochemical parameters. The results from both approaches showed that hydrogen bonding ability of molecules in addition to hydrophobicity at a particular pH were significant in determining variations in PAMPA permeability coefficients. The relationship between Caco-2 cell permeability and artificial lipid membrane permeability was then determined. The compounds were sorted according to their absorption pathway in the plot of the Caco-2 cell and PAMPA permeability coefficients.  相似文献   

2.
To evaluate the absorption of drugs with diverse structures across a membrane via the transcellular route, their permeability was measured using the parallel artificial membrane permeation assay (PAMPA). The permeability coefficients obtained by PAMPA were analyzed using a classical quantitative structure-activity relationship (QSAR) approach with simple physicochemical parameters and 3D-QSAR, VolSurf. We formulated correlation equations for diverse drugs similar to the equation obtained for peptide-related compounds in our previous study. The hydrogen-bonding ability of molecules, not only the hydrogen-accepting ability but also the hydrogen-donating ability, in addition to hydrophobicity at a particular pH, was significant in determining variations in PAMPA permeability coefficients. Based on this result, an in silico good prediction model for the passive transcellular permeability of diverse structural compounds was obtained. The artificial lipid-membrane permeability coefficients of the drugs, except salicylic acid, were well correlated with the Caco-2 permeability in a previous report suggesting the importance of absorption by the transcellular mechanism for these drugs.  相似文献   

3.
The parallel artificial membrane permeation assay (PAMPA) was developed as a model for the prediction of transcellular permeation in the process of drug absorption. Our research group has measured the PAMPA permeability of peptide‐related compounds, diverse drugs, and agrochemicals. This work led to a classical quantitative structure–activity relationship (QSAR) equation for PAMPA permeability coefficients of structurally diverse compounds based on simple physicochemical parameters such as lipophilicity at a particular pH (log Poct and |pKa?pH|), H‐bond acceptor ability (SAHA), and H‐bond donor ability (SAHD). Since the PAMPA permeability of lipophilic compounds decreased with their apparent lipophilicity due to the unstirred water layer (UWL) barrier on membrane surfaces and to membrane retention, a bilinear QSAR model was introduced to explain the permeability of a broader set of compounds using the same physicochemical parameters as those used for the linear model. We also compared PAMPA and Caco‐2 cell permeability coefficients of compounds transported by various absorption mechanisms. The compounds were classified according to their absorption pathway (passively transported compounds, actively transported compounds, and compounds excreted by efflux systems) in the plot of Caco‐2 vs. PAMPA permeability. Finally, based on the QSAR analyses of PAMPA permeability, an in silico prediction model of human oral absorption for possibly transported compounds was proposed, and the usefulness of the model was examined.  相似文献   

4.
5.
6.
7.
An allosteric reaction has been found in a variety of instances where an inverted parabolic relationship between biological activity and hydrophobicity is apparent, that is the activity first decreases as hydrophobicity increases and after a certain point, activity begins to increase. This could be attributed to the ligands causing a change in the receptor structure. In this report, the role of hydrophobic properties of chemicals in promoting allosteric reactions have been discussed in term of hydrophobicity (logP) by the formulation of a total number of 50 QSAR equations. The QSAR model of this type may be represented by Eq. I.  相似文献   

8.
We have designed sugar-hybrid TX-1877 derivatives conjugated with sugar moieties including beta-glucose (beta-Glc), beta-galactose (beta-Gal), alpha-mannose (alpha-Man) and N-acetyl-beta-galactosamine (beta-GalNAc). Compound 1 (TX-1877) was glycosylated with appropriate peracetylated sugars using BF(3)-OEt(2) to give acetylated sugar-hybrids, 5 (TX-2244), 6 (TX-2245), 7 (TX-2246), and 10 (TX-2243). Removal of the acetyl groups afforded the sugar-hybrids having free hydroxyl groups, 11 (TX-2141), 12 (TX-2218), 13 (TX-2217) and 14 (TX-2068). We evaluated their radiosensitizing activities by an in vitro radiosensitization assay. All free hydroxyl hybrids have lower enhancement ratio (ER) values (ER1.43) and lower n-octanol/water partition coefficient (P(oct)) values (P(oct)<1.00x10(-2)) than does 1 (TX-1877, ER=1.75, P(oct): 5.60x10(-2)). All acetylated hybrids have similar P(oct) values (3.55x10(-2)-1.05x10(-1)) to 1 (TX-1877) and have improved ER values (ER>or=1.47) compared to the hybrids having free hydroxyl groups. Among these, 5 (TX-2244) is the most active radiosensitizer (ER=2.30). We found a good correlation (r=0.866) between the magnitude of P(oct) (logP(oct)) and the ER value of 5 (TX-2244), 6 (TX-2245), 7 (TX-2246), 10 (TX-2243) and 1 (TX-1877), suggesting that increasing the hydrophobicity is reflected in increased in vitro radiosensitizing activity. In the present study, we have succeeded in producing sugar-hybrid hypoxic cell radiosensitizers that have an increased radiosensitizing activity that does not depend on increased hydrophobicity.  相似文献   

9.
In this study, 172 diacylhydrazine analogs were examined for their ability to activate an ecdysone (molting hormone)-dependent reporter gene in a silkworm (Bombyx mori) cell-based high-throughput screening assay. The measured EC(50) values (concentration required to cause an effect in 50% of the cells) were used to construct a 3-D QSAR model that describes the ecdysone agonist activities of the diacylhydrazine analogs. Of these compounds, 14 exhibited no activity and were excluded from the 3-D QSAR analysis. The resulting equation described approximately 74% of the activity for 158 compounds. The final equation consisted of 42% electrostatic and 58% steric effects (r(2) = 0.74 and q(2) = 0.45). Comparative molecular field analysis (CoMFA) was used to visualize the steric and electrostatic potential fields that were favorable and unfavorable for biological activity. Of particular interest was the observation that the hydrophobic parameter (logP) was not necessary for describing the observed activities, although previous studies have cited the importance of hydrophobic parameters in both classical and 3-D QSAR analyses of these compounds. Modeling studies of the B. mori ecdysone receptor supported the observed physicochemical parameters required for activity reported by the CoMFA models. Comparison of the present analysis with those performed using other lepidopteran assay systems evidenced a high degree of correlation (r(2) = 0.81 for a Sf-9 cell-based assay and r(2) = 0.89 for a Chilo suppressalis integument-based assay), indicating that it is valid to compare the results generated with the B. mori cell-based system to those generated with previous lepidopteran assays. This novel assay system is amendable to a high-throughput screening format and should greatly increase our ability to discover novel agonists of molting hormone (ecdysone) activity.  相似文献   

10.
QSAR analysis based on classical Hansch approach was adopted on two recently reported novel series of 2-phenylpyran-4-ones as selective cyclooxygenase-2 (COX-2) inhibitors. The 6-methyl derivatives of title compounds bifurcate as 3-phenoxypyran-4-ones (subset A) and 3-phenylpyran-4-ones (subset B) among series 1. Series 2 consists of 5-chloro derivatives of title compounds. Various regression equations were derived to study the influence of phenoxy and phenyl ring substituents of series 1 compounds on COX-2, COX-1 and selective COX-2 over COX-1 inhibitory activity. The best triparametric equation derived for 36 compounds of series 1 explains the hydrophobic, electronic and steric requirements for improved COX-2 inhibitory activity. QSAR model derived to explore the selective COX-2 over COX-1 inhibition showed that selectivity could be influenced by size and lipophilicity of substituents. The size of the first atom of 2 substituents appears to have negative effect on selectivity, whereas highly polar 3 substituents at R are favorable for improved selectivity. QSAR investigations on series 2 compounds revealed some interesting correlation of COX-2 inhibitory activity with calculated physicochemical properties of whole molecules. The positive logP confirms the hydrophobic interaction of series 2 compounds with COX-2 enzyme. The positive MR term indicates that an overall increase in size and polarizabilty of the molecules increases COX-2 inhibitory activity. The positive contribution of structural variable suggests biphenyl analogs are extremely potent COX-2 inhibitors.  相似文献   

11.
The purpose of this work was to investigate the synthetic phospholipid dependence of permeability measured by parallel artificial membrane permeability assay (PAMPA) method. Three phospholipids with hydrophobic groups of different lengths and phosphorylcholine as the hydrophilic group were concisely synthesized. Ten model drug molecules were selected because of their distinct human fraction absorbed (%FA) values and various pKa characteristics. In vitro drug permeation experiments were designed to determine the effect of the incubation time (4–20 h), pH gradient (4.6–9.32) and carbon chain length (8, 10, 12) on the drug permeability through the synthetic phospholipid membrane in the PAMPA system. The results showed that intensive and significant synthetic phospholipids dependence of permeability influenced by the length of lipid’s hydrophobic carbon chain. The effective permeability constant (Pe) of each drug increased rapidly with time, then decreased slightly after reaching the maximum; the pH gradient changed the drug permeability according to the pH-partition hypothesis for drugs with diverse pKa values; and longer hydrophobic chains in the synthetic phospholipid membrane improved the drug permeability, as observed for all test drugs at almost all incubation time points. This newly proposed PAMPA model considered the synthetic phospholipid membrane and showed good Pe-%FA correlation for the passive transport of drugs, making it a helpful supplementary method for PAMPA systems.  相似文献   

12.
A series of novel 9-substituted-3,7-dithia-5-azatetracyclo[9.2.1.0(2,10).0(4,8)]tetradecen-4(8)-ones-6 have been synthesized by a stereoselective hetero-Diels-Alder reaction of 5-ylidene-4-thioxo-2-thiazolidone derivatives with norbornene-2. All the compounds have been evaluated for antitumor activity in in vitro human tumor cell lines, and 10 of them possessed significant and selective cytotoxicity (MGM logGI50 approximately -4.17 to -4.98, for individual cell lines logGI50 up to -8). COMPARE analyses of differential growth inhibition patterns of compounds at the GI50 level showed high correlations with some of the antitubulin agents. The lipophilicity of the compounds was studied by RP-TLC and found to correlate well with calculated logP values. Docking and structure-activity relationship studies produced seven QSAR models with 2 or 3 variables, with correlation coefficients r2>0.9 and leave-one-out cross-validation correlation coefficients, q2>0.8.  相似文献   

13.
Partition coefficients of six 2-phenyl-1,3-oxazoline congeners containing 2-I, 2-NO2, 2-CF3, 2,6-(CH3)2, 2,6-F2, and 2-F-6-Cl substitutions on the phenyl moiety were measured in a 1-octanol/water system using the flask-shaking method. The effect on the hydrophobicity (LogP) of substituents on the phenyl moiety of 2-phenyl-1,3-oxazolines linearly correlated with that of benzamide congeners. logP values of other 2-(substituted phenyl)-1,3-oxazoline analogs were empirically estimated from the corresponding substituted benzamides. The ovicidal activity of 2-(substituted phenyl)-4-phenyl-1,3-oxazoline analogs against the two-spotted spider mite Tetranychus [corrected] urticae was quantitatively analyzed using the classical QSAR (Hansch-Fujita) method. Results showed that ovicidal activity increases with hydrophobicity. The introduction of inductive electron-withdrawing groups at ortho-positions increased ovicidal activity, but addition of steric bulk was unfavorable. Substitution at either the meta- or para-position was detrimental to the acaricidal activity.  相似文献   

14.
High binding affinity for estrogen receptor and the appearance of estrogenic activity require a phenolic ring and an appropriate hydrophobic group adjacent to the phenolic ring. A quantitative structure-activity relationship analysis based on the values of logP and the pK(a) of the phenolic group showed that the hydrophobicity of these compounds is highly correlated to the estrogen receptor alpha (ERalpha)-binding affinity. These results should be useful for application of these spherical boron clusters (dicarba-closo-dodecaboranes; carboranes) as hydrophobic pharmacophores in drug design, as well as for microscopic analysis of ER-ligand interactions.  相似文献   

15.
16.
The activity of 52 diacylhydrazine congeners was evaluated by measuring the inhibition of the incorporation of [3H]ponasterone A into intact Sf-9 cells. Eleven compounds were newly synthesized in this study. Results showed that the substitution of the 2-CH3 or 3-OCH3 moiety of methoxyfenozide with other groups or the removal of either group was unfavorable to the activity. The activity was quantitatively analyzed using both classical QSAR (Hansch-Fujita) and three-dimensional QSAR methods (comparative molecular field analysis, CoMFA). Sterically favorable fields were observed at the 3- and 4-positions of the benzene ring opposite from the t-butyl group (B-ring), and a sterically unfavorable field was evidenced at the 2-position. Another sterically unfavorable field developed surrounding the favorable field observed at the 4-position of the B-ring. Electrostatically negative fields were observed near the CO moiety, above the benzene ring, and at the 4-position of the B-ring. The optimum hydrophobicity of compounds in terms of their logP values was calculated to be approximately 4.1. Results of the three dimensional structure-activity relationship analyses were consistent with those obtained from the previously reported classical QSAR for 2-chlorobenzoyl analogs containing various para-substituents. The high activity of potent insecticides such as tebufenozide and chromafenozide were rationalized by CoMFA. Thus, this CoMFA result will be useful in the design of new compounds and in understanding the molecular mechanism of the ligand-receptor interactions.  相似文献   

17.
We tested four aromatic carbonylic compounds and their corresponding reduced derivatives, possible substrates, and products of a biotransformation for toxicity against the white-rot fungus Phanerochaete chrysosporium. The bacterium Pseudomonas putida, which has been proven to be a good test organism for investigating toxic effects, was used as a primary screen. For both P. chrysosporium and P. putida, all ketones showed a higher toxicity than their corresponding alcohol derivatives. Within one chemical group a direct correlation between the hydrophobicity (logP values) of the compounds and their toxicity could be observed. Furthermore, all tested compounds also caused an isomerization of cis to trans unsaturated fatty acids in P. putida, a mechanism of this bacterium to adapt its membrane to toxic environmental influences. Toxicity of aromatic carbonylic compounds in an established biotransformation system with P. chrysosporium can be estimated by calculating the corresponding logP values of the substrates and potential products. P. putida can be used to test the toxicity of aromatic ketones to the basic diomycete P. chrysosporium.  相似文献   

18.
19.
QSAR studies on 104 flavonoid derivatives as p56lck protein tyrosine kinase inhibitors were performed using hydration energy and logP as predictor parameters. The results obtained demonstrate in detail, which specify that hydration energy and hydrophobic parameters of the compounds play a significant role in developing QSAR models. The significance of presence and absence of substituents on particular position is successfully explored with the help of indicator parameters. The results are critically discussed on the basis of multiple linear regression parameters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号