首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Injection of kainic acid (KA) into the rat hippocampus reduced the phosphorylation-related immunoreactivity of the heavy subunit of neurofilament proteins (NF-H). The effect was demonstrated quantitatively with a dot-immunobinding assay and qualitatively by immunoblotting with monoclonal antibodies against phosphorylation-dependent and nonphosphorylation-related epitopes of NF-H. The KA-induced reduction affected 50% of the phosphorylated NF-H in half of the hippocampus after 48 h. At the same time, the nonphosphorylation-related NF-H immunoreactivity increased as revealed by immunoblotting, indicating a shift from phosphorylated to nonphosphorylated NF-H. The effects on NF-H preceded a decrease in content of the neuron-specific enolase, a soluble neuronal cytoplasmic protein. No alterations of the light subunit of neurofilament proteins occurred, suggesting that KA has a preferential effect on NF-H phosphorylation. N-Methyl-D-aspartate administered similarly did not lead to a rapid dephosphorylation of NF-H. We propose that kainate receptor-mediated dephosphorylation in NF-H is involved in the signal transduction of excitatory amino acids with consequences for neuronal functions dependent on intermediary filament phosphorylation.  相似文献   

2.
Summary. Neurofilaments (NFs) are integral constituents of the neuron playing a major role in brain development, maintenance, regeneration and the pattern of expression for NFs suggests their contribution to plasticity of the neuronal cytoskeleton and creating and maintaining neuronal architecture. Using immune-histochemical techniques the altered expression of NFs in Down syndrome (DS) and Alzheimer's disease (AD) has been already published but as no corresponding systematic immune-chemical study has been reported yet, we decided to determine proteins levels of three NFs in several brain regions of DS and AD brain. We evaluated immunoreactive NF-H, NF-M and NF-L levels using Western blotting in brain regions temporal, occipital cortex and thalamus of patients with DS (n = 9), AD (n = 9) and controls (n = 12). We found significantly increased NF-H in temporal cortex (controls: means 0.74 ± 0.39 SD; DS: means 3.01 ± 2.18 SD) of DS patients and a significant decrease of NF-L in occipital cortex of DS and AD patients (controls: means 1.19 ± 0.86 SD; DS: means 0.35 ± 0.20; AD: 0.20 ± 0.11 SD). We propose that the increase of NF-H in temporal cortex of DS brain is due to neuritic sprouting as observed in immune-histochemical studies. The increase may not be caused by the known accumulation of NFs in plaques, tangles or Lewy bodies due to our solubilization protocol. The decrease of NF-L in occipital cortex of DS and AD patients may well be reflecting neuronal loss. Altogether, however, we suggest that NFs are not reliable markers for neuronal death, a hallmark of both neurodegenerative diseases, in DS or AD. The increase of NF-H in DS or the decrease of NF-L in DS and AD leaves the other NFs unchanged, which points to dysregulation in DS and AD and raises the question of impaired structural assembly of neurofilaments. Received July 19, 2000 Accepted July 28, 2000  相似文献   

3.
Dendrites play important roles in neuronal function. However, the cellular mechanism for the growth and maintenance of dendritic arborization is unclear. Neurofilaments (NFs), a major component of the neuronal cytoskeleton, are composed of three polypeptide subunits, NF-H, NF-M, and NF-L, and are abundant in large dendritic trees. By overexpressing each of the three NF subunits in transgenic mice, we altered subunit composition and found that increasing NF-H and/or NF-M inhibited dendritic arborization, whereas increasing NF-L alleviated this inhibition. Examination of cytoskeletal organization revealed that increasing NF-H and/or NF-M caused NF aggregation and dissociation of the NF network from the microtubule (MT) network. Increasing NF-H or NF-H together with NF-M further reduced NFs from dendrites. However, these changes were reversed by elevating the level of NF-L with either NF-H or NF-M. Thus, NF-L antagonizes NF-H and NF-M in organizing the NF network and maintaining a lower ratio of NF-H and NF-M to NF-L is critical for the growth of complex dendritic trees in motor neurons.  相似文献   

4.
Axonal maturation in situ is accompanied by the transition of neurofilaments (NFs) comprised of only NF-M and NF-L to those also containing NF-H. Since NF-H participates in interactions of NFs with each other and with other cytoskeletal constituents, its appearance represents a critical event in the stabilization of axons that accompanies their maturation. Whether this transition is effected by replacement of "doublet" NFs with "triplet" NFs, or by incorporation of NF-H into existing doublet NFs is unclear. To address this issue, we examined the distribution of NF subunit immunoreactivity within axonal cytoskeletons of differentiated NB2a/d1 cell and DRG neurons between days 3-7 of outgrowth. Endogenous immunoreactivity either declined in a proximal-distal gradient or was relatively uniform along axons. This distribution was paralleled by microinjected biotinylated NF-L. By contrast, biotinylated NF-H displayed a bipolar distribution, with immunoreactivity concentrated within the proximal- and distal-most axonal regions. Proximal biotinylated NF-H accumulation paralleled that of endogenous NF immunoreactivity; however, distal-most biotinylated NF-H accumulation dramatically exceeded that of endogenous NFs and microinjected NF-L. This phenomenon was not due to co-polymerization of biotin-H with vimentin or alpha-internexin. This phenomenon declined with continued time in culture. These data suggest that NF-H can incorporate into existing cytoskeletal structures, and therefore suggest that this mechanism accounts for at least a portion of the accumulation of triplet NFs during axonal maturation. Selective NF-H accumulation into existing cytoskeletal structures within the distal-most region may provide de novo cytoskeletal stability for continued axon extension and/or stabilization.  相似文献   

5.
Proline-directed protein kinase (PDPK), a complex of p34cdc2 and p58cyclin A, phosphorylates bovine neurofilaments (NFs) in vitro. Incubation of intact filaments with PDPK led to strong labeling of the heavy (NF-H) and middle (NF-M) molecular weight NF proteins and weaker labeling of the low molecular weight protein (NF-L). All three proteins were phosphorylated in solution, with the best substrate being NF-H. Proteins that had been dephosphorylated by enzymatic treatment were better substrates than native proteins--as many as 6 mol of phosphate were incorporated per mole of NF-H. Partial proteolytic cleavage experiments combined with two-dimensional peptide mapping indicated that NF-H and NF-M were phosphorylated predominantly in the tail domains, with some phosphate also appearing in the heads. Soluble NF-L is phosphorylated on the head domain peptide L-3, whereas NF-L within intact filaments is phosphorylated only on the tail domain peptide L-1. Phosphorylation does not lead to filament disassembly. A possible role for PDPK in NF phosphorylation in vivo is discussed.  相似文献   

6.
Cell specific markers were quantified in the hippocampus, the amygdala/pyriform cortex, the frontal cerebral cortex and the striatum of the rat brain after systemic administration of kainic acid. Neuron specific enolase (NSE) reflects loss of neurons, glial fibrillary acidic protein (GFAP) reflects reactive gliosis, and brain levels of serum proteins measures blood-brain-barrier permeability. While the concentration of NSE remained unaffected in the frontal cerebral cortex and the striatum, their GFAP content increased during the first three days. In the hippocampus and amygdala, NSE levels decreased significantly. GFAP levels in the hippocampus were unaffected after one day and decreased in the amygdala/pyriform cortex. After that, GFAP increased strikingly until day 9 or, in the case of amygdala/pyriform cortex, even longer. This biphasic time course for GFAP was accompanied by a decrease of S-100 during days 1-9 followed by a significant increase at day 27 above the initial level. The regional differences in GFAP and S-100 could result from the degree of neuronal degeneration, the astrocytic receptor set-up and/or effects on the blood-brain barrier.  相似文献   

7.
Phosphorylation of neurofilament-L protein (NF-L) by the catalytic subunit of cAMP-dependent protein kinase (A-kinase) inhibits the reassembly of NF-L and disassembles filamentous NF-L. The effects of phosphorylation by A-kinase on native neurofilaments (NF) composed of three distinct subunits: NF-L, NF-M, and NF-H, however, have not yet been described. In this paper, we examined the effects of phosphorylation of NF proteins by A-kinase on both native and reassembled filaments containing all three NF subunits. In the native NF, A-kinase phosphorylated each NF subunit with stoichiometries of 4 mol/mol for NF-L, 6 mol/mol for NF-M, and 4 mol/mol for NF-H. The extent of NF-L phosphorylation in the native NF was nearly the same as that of purified NF-L. However, phosphorylation did not cause the native NFs to disassemble into oligomers, as was the case for purified NF-L. Instead, partial fragmentation was detected in sedimentation experiments and by electron microscopic observations. This is probably not due to the presence of the three NF subunits in NF or to differences in phosphorylation sites because reassembled NF containing all three NF subunits were disassembled into oligomeric forms by phosphorylation with A-kinase and the phosphorylation by A-kinase occurred at the head domain of NF-L whether NF were native or reassembled. Disassembling intermediates of reassembled NF containing all three NF subunits were somewhat different from disassembling intermediates of NF-L. Thinning and loosening of filaments was frequently observed preceding complete disassembly. From the fact that the thinning was also observed in the native filaments phosphorylated by A-kinase, it is reasonable to propose the native NF is fragmented through a process of thinning that is stimulated by phosphorylation in the head domain of the NF subunits.  相似文献   

8.
Neurofilament (NF), a major neuronal intermediate filament, is composed of three subunits, NF-L, NF-M, and NF-H. All three subunits contain a well conserved glutamate (E)-rich region called "E-segment" in the N terminus of the tail region. Although the E-segments of NF-L and NF-M are phosphorylated by casein kinases, it has not been observed in NF-H. Using mass spectrometric analysis, we identified phosphorylation of the E-segment of NF-H, prepared from rat spinal cords, at Ser-493 and Ser-501 in the Ser-Pro sequences. The E-segment kinase was isolated from rat brain extract using column chromatography and identified as glycogen synthase kinase (GSK) 3beta. GSK3beta was shown to phosphorylate at Ser-493 in vitro by phosphopeptide mapping and site-directed mutagenesis, and in vivo in HEK293 cells using the phospho-Ser-493 antibody, but did not phosphorylate Ser-501. GSK3beta preferred Ser-493 to the KSP-repeated sequences for phosphorylation sites in the NF-H tail domain. Moreover, Ser-493 was a better phosphorylation site for GSK3beta than other proline-directed protein kinases, Cdk5/p35 and ERK. GSK3beta in the spinal cord extract was associated with NF cytoskeletons. Taken together, we concluded that Ser-493 in the E-segment of NF-H is phosphorylated by GSK3beta in rat spinal cords.  相似文献   

9.
Intracerebral injection of kainic acid in cerebral cortex, hippocampus or amygdala in cats chronically implanted showed that: 1) Hippocampus and amygdala presented a greater sensitivity than the cerebral cortex, while hippocampus presented a greater sensitivity than the amygdala to the generation of an epileptic focus. 2) Comparison of latency, mean duration of afterdischarges, and the mean time period to obtain the peak intensity of the afterdischarge in the three cited structures, showed that mean latency of the first afterdischarge was significantly shorter in hippocampus and amygdala compared with the cerebral cortex. Moreover the mean time period to reach the peak intensity of the afterdischarge was again shorter in the subcortical structures. 3) The epileptic foci both in hippocampus and amygdala were blocked by CNQX and muscimol. 4) The behavioral changes depended on the intensity of the epileptic process. Tonic-clonic convulsions appeared only when the motor cerebral cortex was involved. Finally, 5) kainic acid injections in hippocampus and amygdala elicited an intense neuronal destruction and gliosis of these structures. We conclude that intracerebral injection of low doses of kainic acid in cats represent a good model to study focal epileptic thresholds in the CNS.  相似文献   

10.
Three days after systemic administration of kainic acid (15 mg/kg, s.c.), selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, and high-affinity choline uptake) and GABAergic parameters [benzodiazepine and gamma-aminobutyric acid (GABA) receptors] were studied in the frontal and piriform cortex, dorsal hippocampus, amygdaloid complex, and nucleus basalis. Kainic acid treatment resulted in a significant reduction of choline acetyltransferase activity in the piriform cortex (by 20%), amygdala (by 19%), and nucleus basalis (by 31%) in comparison with vehicle-injected control rats. A lower activity of acetylcholinesterase was also determined in the piriform cortex following parenteral kainic acid administration. [3H]Quinuclidinyl benzilate binding to muscarinic acetylcholine receptors was significantly decreased in the piriform cortex (by 33%), amygdala (by 39%), and nucleus basalis (by 33%) in the group treated with kainic acid, whereas such binding in the hippocampus and frontal cortex was not affected by kainic acid. Sodium-dependent high-affinity choline uptake into cholinergic nerve terminals was decreased in the piriform cortex (by 25%) and amygdala (by 24%) after kainic acid treatment. In contrast, [3H]flunitrazepam binding to benzodiazepine receptors and [3H]muscimol binding to GABA receptors were not affected 3 days after parenteral kainic acid application in any of the brain regions studied. The data indicate that kainic acid-induced limbic seizures result in a loss of cholinergic cells in the nucleus basalis that is paralleled by degeneration of cholinergic fibers and cholinoceptive structures in the piriform cortex and amygdala, a finding emphasizing the important role of cholinergic mechanisms in generating and/or maintaining seizure activity.  相似文献   

11.
Propionic and methylmalonic acidemias are inherited neurometabolic disorders biochemically characterized by tissue accumulation of propionic (PA) and methylmalonic (MMA) acids, respectively. Neurofilaments (NF) are important cytoskeletal proteins and phosphorylation/dephosphorylation of NF is important to stabilize the cytoskeleton. We investigated the effects of PA and MMA on the high molecular weight neurofilament subunit associated with the cytoskeletal fraction of rat cerebral cortex along development. Cortical slices from 9- to 60-day-old rats were incubated with 2.5 mM PA or MMA. The cytoskeletal fraction was extracted and the immunoreactivity for phosphorylated or total NF-H was analyzed by immunoblotting using specific antibodies. Results showed that treatment of tissue slices with the acids induced an increased Triton-insoluble phosphorylated NF-H immunoreactivity in up to 17-day-old rats. Furthermore, treatments significantly increased the total amount of NF-H in 12-day-old rats. These findings indicate that PA and MMA alter the dynamic regulation of NF-H assembly in the cytoskeletal fraction.  相似文献   

12.
2,5-Hexanedione (2,5-HD), the neurotoxic metabolite of n-hexane, can structurally modify neurofilaments (NF) by pyrrole adduct formation and subsequent covalent cross-linking. 2,5-HD also induces accumulations of NF within the pre-terminal axon. We examined whether exposure of NF to 2,5-HD affected NF degradation. Two different models were used: (1) NF-enriched cytoskeletons isolated from human sciatic nerve were incubated with 2,5-HD in vitro and (2) differentiated human neuroblastoma cells (SK-N-SH) were exposed to 2, 5-HD in culture prior to isolation of cytoskeletal proteins. The cytoskeletal preparations were subsequently incubated with calpain II. The amount of NF-H and NF-L remaining after proteolysis was determined by SDS-PAGE and quantitative immunoblotting. NF-M proteolysis could not be quantified. Incubation of sciatic nerve cytoskeletal preparations with 2,5-HD resulted in cross-linking of all three NF proteins into high molecular weight (HMW) material with a range of molecular weights. Proteolysis of the NF-H and NF-L polypeptides was not affected by 2,5-HD-exposure. Degradation of the HMW material containing NF-H or NF-L was retarded when comparing with degradation of the NF-H and NF-L polypeptides, respectively, from control samples, but not as compared to the corresponding NF polypeptides from 2,5-HD-treated samples. Exposure of SK-N-SH cells to 2,5-HD also resulted in considerable cross-linking of NF. No differences were found between the proteolytic rates of NF-L and NF-H from exposed cells as compared with those subunits from control cells. Moreover, degradation of cross-linked NF-H was not different from monomeric NF-H. In conclusion, whether 2,5-HD affects calpain-mediated degradation of cross-linked NF proteins will depend on which model better reflects NF cross-linking as occurring in 2, 5-HD-induced axonopathy. However, with both models it was demonstrated that exposure of NF proteins to 2,5-HD without subsequent cross-linking is not adequate to inhibit NF proteolysis in vitro by added calpain.  相似文献   

13.
To clarify the role of the neurofilament (NF) medium (NF-M) and heavy (NF-H) subunits, we generated mice with targeted disruption of both NF-M and NF-H genes. The absence of the NF-M subunit resulted in a two- to threefold reduction in the caliber of large myelinated axons, whereas the lack of NF-H subunits had little effect on the radial growth of motor axons. In NF-M-/- mice, the velocity of axonal transport of NF light (NF-L) and NF-H proteins was increased by about two-fold, whereas the steady-state levels of assembled NF-L were reduced. Although the NF-M or NF-H subunits are each dispensable for the formation of intermediate filaments, the absence of both subunits in double NF-M; NF-H knockout mice led to a scarcity of intermediate filament structures in axons and to a marked approximately twofold increase in the number of microtubules. Protein analysis indicated that the levels of NF-L and alpha-internexin proteins were reduced dramatically throughout the nervous system. Immunohistochemistry of spinal cord from the NF-M-/-;NF-H-/- mice revealed enhanced NF-L staining in the perikaryon of motor neurons but a weak NF-L staining in axons. In addition, axonal transport studies carried out by the injection of [35S]methionine into spinal cord revealed after 30 days very low levels of newly synthesized NF-L proteins in the sciatic nerve of NF-M-/-;NF-H-/- mice. The combined results demonstrate a requirement of the high-molecular-weight subunits for the assembly of type IV intermediate filament proteins and for the efficient translocation of NF-L proteins into the axonal compartment.  相似文献   

14.
Neurofilaments (NFs) are prominent components of large myelinated axons. Previous studies have suggested that NF number as well as the phosphorylation state of the COOH-terminal tail of the heavy neurofilament (NF-H) subunit are major determinants of axonal caliber. We created NF-H knockout mice to assess the contribution of NF-H to the development of axon size as well as its effect on the amounts of low and mid-sized NF subunits (NF-L and NF-M respectively). Surprisingly, we found that NF-L levels were reduced only slightly whereas NF-M and tubulin proteins were unchanged in NF-H–null mice. However, the calibers of both large and small diameter myelinated axons were diminished in NF-H–null mice despite the fact that these mice showed only a slight decrease in NF density and that filaments in the mutant were most frequently spaced at the same interfilament distance found in control. Significantly, large diameter axons failed to develop in both the central and peripheral nervous systems. These results demonstrate directly that unlike losing the NF-L or NF-M subunits, loss of NF-H has only a slight effect on NF number in axons. Yet NF-H plays a major role in the development of large diameter axons.  相似文献   

15.
Newly synthesized neurofilaments or protofilaments are incorporated into a highly stable stationary cytoskeleton network as they are transported along axons. Although the heavily phosphorylated carboxyl-terminal tail domains of the heavy and medium neurofilament (NF) subunits have been proposed to contribute to this process and particularly to stability of this structure, their function is still obscure. Here we show in NF-H/M tail deletion [NF-(H/M)tailΔ] mice that the deletion of both of these domains selectively lowers NF levels 3–6 fold along optic axons without altering either rates of subunit synthesis or the rate of slow axonal transport of NF. Pulse labeling studies carried out over 90 days revealed a significantly faster rate of disappearance of NF from the stationary NF network of optic axons in NF-(H/M)tailΔ mice. Faster NF disappearance was accompanied by elevated levels of NF-L proteolytic fragments in NF-(H/M)tailΔ axons. We conclude that NF-H and NF-M C-terminal domains do not normally regulate NF transport rates as previously proposed, but instead increase the proteolytic resistance of NF, thereby stabilizing the stationary neurofilament cytoskeleton along axons.  相似文献   

16.
Prolonged or excess stimulation of excitatory amino acid receptors leads to seizures and the induction of excitotoxic nerve cell injury. Kainic acid acting on glutamate receptors produces degeneration of vulnerable neurons in parts of the hippocampus and amygdala, but the exact mechanisms are not fully understood. We have here investigated whether the anti-apoptotic protein Bruce is involved in kainic acid-induced neurodegeneration. In the rat hippocampus and cortex, Bruce was exclusively expressed by neurons. The levels of Bruce were rapidly downregulated by kainic acid in hippocampal neurons as shown both in vivo and in cell culture. Caspase-3 was activated in neurons exhibiting low levels of Bruce causing cell death. Likewise, downregulation of Bruce using antisense oligonucleotides decreased viability and enhanced the effect of kainic acid in the hippocampal neurons. The results show that Bruce is involved in neurodegeneration caused by kainic acid and the downregulation of the protein promotes neuronal death.  相似文献   

17.
18.
Systemic kainic acid administration to prepubescent rats, in a convulsant dose, results in permanent changes in behaviour, learning and memory in adulthood (Holmes et al., 1988, Epilepsia 29, 721-730). With regard to the hypothesis that cholinergic mechanisms play a crucial role in cognitive processes, M1- and M2-muscarinic acetylcholine receptors, choline acetyltransferase, and high-affinity choline uptake as well as benzodiazepine receptors were studied in selected cortical regions (frontal, temporal, somatosensory, visual, piriform cortex), in amygdala, hippocampus, and in the nucleus basalis of Meynert from adult rats, which received at the age of 25 days a single dosage of 11 mg/kg, s.c. kainic acid. Kainic acid treatment of prepubescent rats resulted in the adult brain in decreased numbers of the total population of muscarinic acetylcholine receptors in frontal (by 27%, P < 0.05, two-tailed Student's t-test), temporal (22%, P < 0.05), and piriform cortex (31%, P < 0.05), in amygdala (24%, P < 0.05), and nucleus basalis of Meynert (39%, P < 0.02). The binding affinity was unchanged in these regions. However, in the hippocampus, the dissociation constant was significantly increased following kainic acid treatment, while the receptor numbers remained unchanged. Analysis of competition experiments with the muscarinic antagonist pirenzepine revealed that the reductions of muscarinic acetylcholine receptors in the cortical regions after kainic acid treatment are mainly due to decreases in the number of the muscarinic M1-receptor subtype. In the amygdala, the numbers of both M1- and M2-receptor subtypes are reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Neurofilaments (NFs) are composed of triplet proteins, NF-H, NF-M, and NF-L. To understand the dynamics of NFs in vivo, we studied the dynamics of NF-H and compared them to those of NF-L, using the combination of microinjection technique and fluorescence recovery after photobleaching. In the case of NF-L protein, the bleached zone gradually restored its fluorescence intensity with a recovery half time of approximately 35 min. On the other hand, recovery of the bleached zone of NF-H was considerably faster, taking place in approximately 19 min. However, in both cases the bleached zone was stationary. Thus, it was suggested that NF-H is the dynamic component of the NF array and is interchangeable, but that it assembles with the other neurofilament triplet proteins in a more exchangeable way, implying that the location of NF-H is in the periphery of the core NF array mainly composed of NF- L subunits. Immunoelectron microscopy investigations of the incorporation sites of NF-H labeled with biotin compounds also revealed the lateral insertion of NF-H subunits into the preexisting NF array, taking after the pattern seen in the case of NF-L. In summary, our results demonstrate that the dynamics of the L and H subunit proteins in situ are quite different from each other, suggesting different and separated mechanisms or structural specialization underlying the behavior of the two proteins.  相似文献   

20.
We carried out immunolabeling studies of purified bovine spinal cord neurofilaments (NFs) and filaments reconstituted from several combinations of the NF triplet polypeptides, NF-H, NF-M, and NF-L. Six antibodies with known epitopes in either the rod domains or the tailpiece extensions of the NF triplet were used in these studies, and the immune complexes were visualized directly by the glycerol-spray, rotary shadowing technique, which permitted unambiguous identification of the NF sidearms. Antibodies directed against the tailpiece extensions of NF-H and NF-M labeled the sidearms of native NFs and reconstituted filaments containing those two polypeptides, but not the backbone of the filaments. Combining these two antibodies in the same labeling experiment resulted in more intense labeling than either of the antibodies alone, indicating that both NF-H and NF-M are capable of forming sidearms. The anti-NF-L tailpiece antibody recognized only a limited number of sites along native NFs, but labeled reconstituted NF-L homopolymers uniformly and heavily. This suggests that the NF-L tailpiece extension is relatively inaccessible in native filaments, but is accessible in reconstituted homopolymers. One possible explanation is that, in native NFs, the NF-H- and NF-M-containing sidearms curtailed antibody access to NF-L. A second possibility that is not mutually exclusive with the first is that, when both NF-L and another triplet polypeptide are present, they preferentially form heterodimers such that the NF-L tailpiece epitope becomes hidden. Taken collectively, and in combination with published structural information, our data are consistent with a subunit packing scheme in which an NF-L-containing dimer serves as the fundamental building block of most mammalian NFs, such that their sidearms consist of pairs of NF-H/NF-L, NF-M/NF-L, or NF-L/NF-L tailpiece extensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号