首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Kiss JZ  Millar KD  Edelmann RE 《Planta》2012,236(2):635-645
While there is a great deal of knowledge regarding plant growth and development in microgravity aboard orbiting spacecraft, there is little information available about these parameters in reduced or fractional gravity conditions (less than the nominal 1g on Earth). Thus, in these experiments using the European Modular Cultivation System on the International Space Station, we studied the interaction between phototropism and gravitropism in the WT and mutants of phytochrome A and B of Arabidopis thaliana. Fractional gravity and the 1 g control were provided by centrifuges in the spaceflight hardware, and unidirectional red and blue illumination followed a white light growth period in the time line of the space experiments. The existence of red-light-based positive phototropism in hypocotyls of seedlings that is mediated by phytochrome was confirmed in these microgravity experiments. Fractional gravity studies showed an attenuation of red-light-based phototropism in both roots and hypocotyls of seedlings occurring due to gravitational accelerations ranging from 0.l to 0.3 g. In contrast, blue-light negative phototropism in roots, which was enhanced in microgravity compared with the 1g control, showed a significant attenuation at 0.3 g. In addition, our studies suggest that the well-known red-light enhancement of blue-light-induced phototropism in hypocotyls is likely due to an indirect effect by the attenuation of gravitropism. However, red-light enhancement of root blue-light-based phototropism may occur via a more direct effect on the phototropism system itself, most likely through the phytochrome photoreceptors. To our knowledge, these experiments represent the first to examine the behavior of flowering plants in fractional or reduced gravity conditions.  相似文献   

5.
The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.  相似文献   

6.
7.
Gravitational biology research facility "Centrifuge" is currently under development for the International Space Station. Research in the Complex Organism Biology, indispensable to the progress in Health Science, is only possible in the Centrifuge aboard the station. So, on-orbit 1 G controls for various specimens including small mammals, fish, and higher plants will be rigorously done in the Centrifuge. This facility is also capable of providing "reduced gravity" likely on the Moon or on Mars. Thus, it will play a key role in creating knowledge of space fundamental biology. As part of the offset of NASA's Shuttle launch services for the Japanese Experiment Module, JAXA is developing the Centrifuge Rotor (CR), the Life Sciences Glovebox (LSG) and the Centrifuge Accommodation Module (CAM). Critical Design Review (CDR) of LSG was conducted on July 2004, while the system CDRs of the CAM and CR are scheduled for December 2004 and August 2005, respectively. Their launch schedules are under review.  相似文献   

8.
Long-duration exposure to microgravity has been shown to have detrimental effects on the human musculoskeletal system. To date, exercise countermeasures have been the primary approach to maintain bone and muscle mass and they have not been successful. Up until 2008, the three exercise countermeasure devices available on the International Space Station (ISS) were the treadmill with vibration isolation and stabilization (TVIS), the cycle ergometer with vibration isolation and stabilization (CEVIS), and the interim resistance exercise device (iRED). This article examines the available envelope of mechanical loads to the lower extremity that these exercise devices can generate based on direct in-shoe force measurements performed on the ISS. Four male crewmembers who flew on long-duration ISS missions participated in this study. In-shoe forces were recorded during activities designed to elicit maximum loads from the various exercise devices. Data from typical exercise sessions on Earth and on-orbit were also available for comparison. Maximum on-orbit single-leg loads from TVIS were 1.77 body weight (BW) while running at 8 mph. The largest single-leg forces during resistance exercise were 0.72 BW during single-leg heel raises and 0.68 BW during double-leg squats. Forces during CEVIS exercise were small, approaching only 0.19 BW at 210 W and 95 RPM. We conclude that the three exercise devices studied were not able to elicit loads comparable to exercise on Earth, with the exception of CEVIS at its maximal setting. The decrements were, on average, 77% for walking, 75% for running, and 65% for squats when each device was at its maximum setting. Future developments must include an improved harness to apply higher gravity replacement loads during locomotor exercise and the provision of greater resistance exercise capability. The present data set provides a benchmark that will enable future researchers to judge whether or not the new generation of exercise countermeasures recently added to the ISS will address the need for greater loading.  相似文献   

9.
The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.  相似文献   

10.
Japan Aerospace Exploration Agency (JAXA) has developed a cell biology experiment facility (CBEF) and a clean bench (CB) as a common hardware in which life science experiments in the Japanese Experiment Module (JEM known as "Kibo") of the International Space Station (ISS) can be performed. The CBEF, a CO2 incubator with a turntable that provides variable gravity levels, is the basic hardware required to carry out the biological experiments using microorganisms, cells, tissues, small animals, plants, etc. The CB provides a closed aseptic operation area for life science and biotechnology experiments in Kibo. A phase contrast and fluorescence microscope is installed inside CB. The biological experiment units (BEU) are designed to run individual experiments using the CBEF and the CB. A plant experiment unit (PEU) and two cell experiment units (CEU type1 and type2) for the BEU have been developed.  相似文献   

11.
Inertial shear force is a surface force that is generated in centrifuges especially with attached samples on flat surfaces and plays a significant role in gravitational and space research. The magnitude of this force is proportional to the radius of the centrifuge and surface area of the sample compartment. In gravitational research we want to study the impact of weight onto a system. However, the force of inertial shear is perpendicular to the gravity vector, hence, results may be obscured or even misinterpreted by this artifact.  相似文献   

12.
13.
Previous studies examining metabolic characteristics of bacterial cultures have mostly suggested that reduced gravity is advantageous for microbial growth. As a consequence, the question of whether space flight would similarly enhance secondary metabolite production was raised. Results from three prior space shuttle experiments indicated that antibiotic production was stimulated in space for two different microbial systems, albeit under suboptimal growth conditions. The goal of this latest experiment was to determine whether the enhanced productivity would also occur with better growth conditions and over longer durations of weightlessness. Microbial antibiotic production was examined onboard the International Space Station during the 72-day 8A increment. Findings of increased productivity of actinomycin D by Streptomyces plicatus in space corroborated with previous findings for the early sample points (days 8 and 12); however, the flight production levels were lower than the matched ground control samples for the remainder of the mission. The overall goal of this research program is to elucidate the specific mechanisms responsible for the initial stimulation of productivity in space and translate this knowledge into methods for improving efficiency of commercial production facilities on Earth.  相似文献   

14.
Kombucha is a multispecies microbial ecosystem mainly composed of acetic acid bacteria and osmophilic acid-tolerant yeasts, which is used to produce a probiotic drink. Furthermore, Kombucha Mutualistic Community (KMC) has been recently proposed to be used during long space missions as both a living functional fermented product to improve astronauts' health and an efficient source of bacterial nanocellulose. In this study, we compared KMC structure and functions before and after samples were exposed to the space/Mars-like environment outside the International Space Station in order to investigate the changes related to their re-adaptation to Earth-like conditions by shotgun metagenomics, using both diversity and functional analyses of Community Ecology and Complex Networks approach. Our study revealed that the long-term exposure to space/Mars-like conditions on low Earth orbit may disorganize the KMC to such extent that it will not restore the initial community structure; however, KMC core microorganisms of the community were maintained. Nonetheless, there were no significant differences in the community functions, meaning that the KMC communities are ecologically resilient. Therefore, despite the extremely harsh conditions, key KMC species revived and provided the community with the genetic background needed to survive long periods of time under extraterrestrial conditions.  相似文献   

15.
16.
The objectives of this 14 days experiment were to investigate the effect of spaceflight on the growth of Ulocladium chartarum, to study the viability of the aerial and submerged mycelium and to put in evidence changes at the cellular level. U. chartarum was chosen for the spaceflight experiment because it is well known to be involved in biodeterioration of organic and inorganic substrates covered with organic deposits and expected to be a possible contaminant in Spaceships. Colonies grown on the International Space Station (ISS) and on Earth were analysed post-flight. This study clearly indicates that U. chartarum is able to grow under spaceflight conditions developing, as a response, a complex colony morphotype never mentioned previously. We observed that spaceflight reduced the rate of growth of aerial mycelium, but stimulated the growth of submerged mycelium and of new microcolonies. In Spaceships and Space Stations U. chartarum and other fungal species could find a favourable environment to grow invasively unnoticed in the depth of surfaces containing very small amount of substrate, posing a risk factor for biodegradation of structural components, as well as a direct threat for crew health. The colony growth cycle of U. chartarum provides a useful eukaryotic system for the study of fungal growth under spaceflight conditions.  相似文献   

17.
The recent National Research Council report, Future Biotechnology Research on the International Space Station, evaluates NASA's plans for research in cell science and protein crystal growth to be conducted on the International Space Station. This report concludes that the NASA biotechnology programs have the potential to significantly impact relevant scientific fields and to increase understanding and insight into fundamental biological issues. In order to realize the potential impacts, NASA must focus its research programs by selecting specific questions related to gravitational forces' role in cell behavior and by using the microgravity environment as a tool to determine the structure of macromolecules with important biological implications. Given the time and volume constraints associated with space-based experiments, instrumentation to be used on the space station must be designed to maximize the productivity of researchers, and NASA's recruitment of investigators and support for space station experiments should aim to encourage and facilitate cutting-edge research.  相似文献   

18.
Early evidence from long-duration flights indicates general cardiovascular deconditioning, including reduced arterial baroreflex gain. The current study investigated the spontaneous baroreflex and markers of cardiovascular control in six male astronauts living for 2-6 mo on the International Space Station. Measurements were made from the finger arterial pressure waves during spontaneous breathing (SB) in the supine posture pre- and postflight and during SB and paced breathing (PB, 0.1 Hz) in a seated posture pre- and postflight, as well as early and late in the missions. There were no changes in preflight measurements of heart rate (HR), blood pressure (BP), or spontaneous baroreflex compared with in-flight measurements. There were, however, increases in the estimate of left ventricular ejection time index and a late in-flight increase in cardiac output (CO). The high-frequency component of RR interval spectral power, arterial pulse pressure, and stroke volume were reduced in-flight. Postflight there was a small increase compared with preflight in HR (60.0 ± 9.4 vs. 54.9 ± 9.6 beats/min in the seated posture, P < 0.05) and CO (5.6 ± 0.8 vs. 5.0 ± 1.0 l/min, P < 0.01). Arterial baroreflex response slope was not changed during spaceflight, while a 34% reduction from preflight in baroreflex slope during postflight PB was significant (7.1 ± 2.4 vs. 13.4 ± 6.8 ms/mmHg), but a smaller average reduction (25%) during SB (8.0 ± 2.1 vs. 13.6 ± 7.4 ms/mmHg) was not significant. Overall, these data show no change in markers of cardiovascular stability during long-duration spaceflight and only relatively small changes postflight at rest in the seated position. The current program routine of countermeasures on the International Space Station provided sufficient stimulus to maintain cardiovascular stability under resting conditions during long-duration spaceflight.  相似文献   

19.
The uneven shielding of the International Space Station from the vessel hull, racks and experiments produces a modulation of the internal radiation environment. A detailed knowledge of this environment, and therefore of the Station's shielding effectiveness, is mandatory for an accurate assessment of radiation risk. We present here the first 3D measurements of the Station's radiation environment, discriminating particle trajectories and LET, made possible using the detection capability of the ALTEA-space detector. We provide evidence for a strong (factor ≈ 3) anisotropy in the inner integral LET for high-LET particles (LET > 50?keV/μm) showing a minimum along the longitudinal station axis (most shielded) and a maximum normal to it. Integrating over all measured LETs, the anisotropy is strongly reduced, showing that unstopped light ions plus the fragments produced by heavier ions approximately maintain flux/LET isotropy. This suggests that, while changing the quality of radiation, the extra shielding along the station main axis is not producing a benefit in terms of total LET. These features should be taken into account (1) when measuring radiation with detectors that cannot distinguish the direction of the impinging radiation or that are unidirectional, (2) when planning radiation biology experiments on the ISS, and (3) when simulating the space radiation environment for experiments on the ground. A novel analysis technique that fully exploits the ability to retrieve the angular distribution of the radiation is also presented as well as the angular particle flux and LET characteristic of three geomagnetic zones measured during 2009 by the ALTEA-space detector. This technique is applied to the ALTEA-space detector, but a wider applicability to other detectors is suggested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号