首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodococcus sp. strain DK17 is known to metabolize o-xylene and toluene through the intermediates 3,4-dimethylcatechol and 3- and 4-methylcatechol, respectively, which are further cleaved by a common catechol 2,3-dioxygenase. A putative gene encoding this enzyme (akbC) was amplified by PCR, cloned, and expressed in Escherichia coli. Assessment of the enzyme activity expressed in E. coli combined with sequence analysis of a mutant gene demonstrated that the akbC gene encodes the bona fide catechol 2,3-dioxygenase (AkbC) for metabolism of o-xylene and alkylbenzenes such as toluene and ethylbenzene. Analysis of the deduced amino acid sequence indicates that AkbC consists of a new catechol 2,3-dioxygenase class specific for methyl-substituted catechols. A computer-aided molecular modeling studies suggest that amino acid residues (particularly Phe177) in the beta10-beta11 loop play an essential role in characterizing the substrate specificity of AkbC.  相似文献   

2.
Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17   总被引:2,自引:0,他引:2  
Rhodococcus sp. strain DK17 was isolated from soil and analyzed for the ability to grow on o-xylene as the sole carbon and energy source. Although DK17 cannot grow on m- and p-xylene, it is capable of growth on benzene, phenol, toluene, ethylbenzene, isopropylbenzene, and other alkylbenzene isomers. One UV-generated mutant strain, DK176, simultaneously lost the ability to grow on o-xylene, ethylbenzene, isopropylbenzene, toluene, and benzene, although it could still grow on phenol. The mutant strain was also unable to oxidize indole to indigo following growth in the presence of o-xylene. This observation suggests the loss of an oxygenase that is involved in the initial oxidation of the (alkyl)benzenes tested. Another mutant strain, DK180, isolated for the inability to grow on o-xylene, retained the ability to grow on benzene but was unable to grow on alkylbenzenes due to loss of a meta-cleavage dioxygenase needed for metabolism of methyl-substituted catechols. Further experiments showed that DK180 as well as the wild-type strain DK17 have an ortho-cleavage pathway which is specifically induced by benzene but not by o-xylene. These results indicate that DK17 possesses two different ring-cleavage pathways for the degradation of aromatic compounds, although the initial oxidation reactions may be catalyzed by a common oxygenase. Gas chromatography-mass spectrometry and 300-MHz proton nuclear magnetic resonance spectrometry clearly show that DK180 accumulates 3,4-dimethylcatechol from o-xylene and both 3- and 4-methylcatechol from toluene. This means that there are two initial routes of oxidation of toluene by the strain. Pulsed-field gel electrophoresis analysis demonstrated the presence of two large megaplasmids in the wild-type strain DK17, one of which (pDK2) was lost in the mutant strain DK176. Since several other independently derived mutant strains unable to grow on alkylbenzenes are also missing pDK2, the genes encoding the initial steps in alkylbenzene metabolism (but not phenol metabolism) appear to be present on this approximately 330-kb plasmid.  相似文献   

3.
Rhodococcus sp. strain DK17 is able to grow on o-xylene, benzene, toluene, and ethylbenzene. DK17 harbors at least two megaplasmids, and the genes encoding the initial steps in alkylbenzene metabolism are present on the 330-kb pDK2. The genes encoding alkylbenzene degradation were cloned in a cosmid clone and sequenced completely to reveal 35 open reading frames (ORFs). Among the ORFs, we identified two nearly exact copies (one base difference) of genes encoding large and small subunits of an iron sulfur protein terminal oxygenase that are 6 kb apart from each other. Immediately downstream of one copy of the dioxygenase genes (akbA1a and akbA2a) is a gene encoding a dioxygenase ferredoxin component (akbA3), and downstream of the other copy (akbA1b and akbA2b) are genes putatively encoding a meta-cleavage pathway. RT-PCR experiments show that the two copies of the dioxygenase genes are operonic with the downstream putative catabolic genes and that both operons are induced by o-xylene. When expressed in Escherichia coli, AkbA1a-AkbA2a-AkbA3 transformed o-xylene into 2,3- and 3,4-dimethylphenol. These were apparently derived from an unstable o-xylene cis-3,4-dihydrodiol, which readily dehydrates. This indicates a single point of attack of the dioxygenase on the aromatic ring. In contrast, attack of AkbA1a-AkbA2a-AkbA3 on ethylbenzene resulted in the formation of two different cis-dihydrodiols resulting from an oxidation at the 2,3 and the 3,4 positions on the aromatic ring, respectively.  相似文献   

4.
Rhodococcus sp. strain DK17 is able to utilize a variety of monocyclic aromatic hydrocarbons, including benzene, phenol, toluene, and o-xylene, as growth substrates. Although DK17 is unable to grow on m- and p-xylene, this strain could transform these two xylene isomers to some extent after induction by o-xylene. The major accumulating compounds formed during the degradation of m- and p-xylene by DK17 were isolated by high-pressure liquid chromatography and identified by gas chromatography-mass spectrometric and (1)H nuclear magnetic resonance spectral techniques. Both xylene isomers were transformed to dihydroxylated compounds by what must be two successive hydroxylation events: m-xylene was converted to 2,4-dimethylresorcinol and p-xylene was converted to 2,5-dimethylhydroquinone. The rigorous structural identification of 2,4-dimethylresorcinol and 2,5-dimethylhydroquinone demonstrates that DK17 can perform distinct regioselective hydroxylations depending on the position of the substituent groups on the aromatic ring.  相似文献   

5.
Rhodococcus rhodochrous strain CTM co-metabolized 2-methylaniline and some of its chlorinated isomers in the presence of ethanol as additional carbon source. Degradation of 2-methylaniline proceeded via 3-methylcatechol, which was metabolized mainly by meta-cleavage. In the case of 3-chloro-2-methylaniline, however, only a small proportion (about 10%) was subjected to meta-cleavage; the chlorinated meta-cleavage product was accumulated in the culture fluid as a dead-end metabolite. In contrast, 4-chloro-2-methylaniline was degraded via ortho-cleavage exclusively. Enzyme assays showed the presence of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase as inducible enzymes in strain CTM. Extended cultivation of strain CTM with 2-methylaniline and 3-chloro-2-methylaniline yielded mutants, including R. rhodochrous strain CTM2, that had lost catechol 2,3-dioxygenase activity; these mutants degraded the aromatic amines exclusively via the ortho-cleavage pathway. DNA hybridization experiments using a gene probe revealed the loss of the catechol 2,3-dioxygenase gene from strain CTM2.  相似文献   

6.
The ohp operon of Rhodococcus strain V49 consists of five genes, ohpR, ohpA, ohpB, ohpC and ohpD which encode putative regulator and transport proteins and confirmed monooxygenase, hydroxymuconic semialdehyde hydrolase and catechol 2,3-dioxygenase enzymes, respectively. These enzymes catalyse the conversion of 3-(2- hydroxyphenyl)propionic acid to the corresponding linear product via a meta-cleavage pathway. Confirmation that the ohp gene cluster formed an operon was provided by gene disruption during which expression of Bacillus levansucrase was confirmed in Rhodococcus. Following biochemical assays of cell-free extracts from recombinant Escherichia coli expressing ohpB (monooxygenase), ohpC (hydroxymuconic-semialdehyde hydrolase) and ohpD (catechol 2,3-dioxygenase), the ortho-hydroxyphenylpropionic acid catabolic pathway in Rhodococcus strain V49 (ATCC 19070) has been predicted.  相似文献   

7.
The metabolically versatile Rhodococcus sp. strain DK17 is able to grow on tetralin and indan but cannot use their respective desaturated counterparts, 1,2-dihydronaphthalene and indene, as sole carbon and energy sources. Metabolite analyses by gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry clearly show that (i) the meta-cleavage dioxygenase mutant strain DK180 accumulates 5,6,7,8-tetrahydro-1,2-naphthalene diol, 1,2-indene diol, and 3,4-dihydro-naphthalene-1,2-diol from tetralin, indene, and 1,2-dihydronaphthalene, respectively, and (ii) when expressed in Escherichia coli, the DK17 o-xylene dioxygenase transforms tetralin, indene, and 1,2-dihydronaphthalene into tetralin cis-dihydrodiol, indan-1,2-diol, and cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, respectively. Tetralin, which is activated by aromatic hydroxylation, is degraded successfully via the ring cleavage pathway to support growth of DK17. Indene and 1,2-dihydronaphthalene do not serve as growth substrates because DK17 hydroxylates them on the alicyclic ring and further metabolism results in a dead-end metabolite. This study reveals that aromatic hydroxylation is a prerequisite for proper degradation of bicyclics with aromatic and alicyclic rings by DK17 and confirms the unique ability of the DK17 o-xylene dioxygenase to perform distinct regioselective hydroxylations.  相似文献   

8.
The operons encoding the transformation of phthalate to protocatechuate are duplicated and present on two different megaplasmids [pDK2 (330 kb) and pDK3 (750 kb)] in Rhodococcus sp. strain DK17. RT-PCR experiments using gene-specific primers showed that both the pDK2- and the pDK3-encoded dihydroxyphthalate decarboxylase genes are simultaneously expressed during growth on phthalate. The doubling time of the pDK2-cured mutant strain DK176 in minimal liquid medium with 5mM phthalate is 52.5% of that of the wild-type strain DK17. The data indicate that both copies of the phthalate operon are equally functional in DK17, and gene dosage is the main reason for slower growth of DK176 on phthalate.  相似文献   

9.
Rhodococcus rhodochrous strain CTM degrades 2-methylaniline mainly via the meta-cleavage pathway. Conversion of the metabolite 3-methylcatechol was catalysed by an Mr 156,000 catechol 2,3-dioxygenase (C23OI) comprising four identical subunits of Mr 39,000. The corresponding gene was detected by using an oligonucleotide as a gene probe. This oligonucleotide was synthesized on the basis of a partial amino acid sequence obtained from the purified enzyme from R. rhodochrous. The structural gene of C23OI was located on a 3.5 kb BglII restriction fragment of plasmid pTC1. On the same restriction fragment the gene for a second catechol 2,3-dioxygenase, designated C23OII, was found. This gene coded for the synthesis of the Mr 40,000 polypeptide of the Mr 158,000 tetrameric C23OII. More precise mapping of the structural genes showed that the C23OI gene was located on a 1.2 kb BglII-SmaI fragment and the C23OII gene on the adjacent 1.15 kb SmaI fragment. Comprehensive substrate range analysis showed that C23OII accepted all the substrates that C23OI did, but additionally cleaved 2,3-dihydroxybiphenyl and catechols derived from phenylcarboxylic acids. C23OI exhibited highest activity towards methylcatechols, whereas C23OII cleaved unsubstituted catechol preferentially.  相似文献   

10.
Two psychrotolerant toluene-degrading Pseudomonas spp. were isolated from JP8 jet-fuel-contaminated soils, Scott Base, Antarctica. Isolates metabolized meta-toluate as sole carbon source at temperatures ranging from 6 to 30 degrees C. Large plasmids (>64kb) were isolated from both isolates. Sequence analysis of PCR products amplified using xylB (the gene encoding benzyl alcohol dehydrogenase) primers revealed that isolates 7/167 and 8/46 were 100% and 92% homologous, respectively, to the xylB gene of the meta-cleavage toluene degradative pathway encoded by the TOL plasmid (pWWO) of Pseudomonas putida mt-2. Assays of cell-free extracts of 7/167 and 8/46 demonstrated activity of catechol 2,3-dioxygenase, benzyl alcohol dehydrogenase, and benzaldehyde dehydrogenase, indicating that the isolates use the meta-cleavage pathway enzymes of toluene degradation typical of TOL type plasmids. As both isolates are able to grow at 6 degrees C ex situ it is feasible that they would be able to metabolize toluene in the Antarctic soils from where they were originally isolated.  相似文献   

11.
Pseudomonas putida GJ31 is able to simultaneously grow on toluene and chlorobenzene. When cultures of this strain were inhibited with 3-fluorocatechol while growing on toluene or chlorobenzene, 3-methylcatechol or 3-chlorocatechol, respectively, accumulated in the medium. To establish the catabolic routes for these catechols, activities of enzymes of the (modified) ortho- and meta-cleavage pathways were measured in crude extracts of cells of P. putida GJ31 grown on various aromatic substrates, including chlorobenzene. The enzymes of the modified ortho-cleavage pathway were never present, while the enzymes of the meta-cleavage pathway were detected in all cultures. This indicated that chloroaromatics and methylaromatics are both converted via the meta-cleavage pathway. Meta cleavage of 3-chlorocatechol usually leads to the formation of a reactive acylchloride, which inactivates the catechol 2,3-dioxygenase and blocks further degradation of catechols. However, partially purified catechol 2,3-dioxygenase of P. putida GJ31 converted 3-chlorocatechol to 2-hydroxy-cis,cis-muconic acid. Apparently, P. putida GJ31 has a meta-cleavage enzyme which is resistant to inactivation by the acylchloride, providing this strain with the exceptional ability to degrade both toluene and chlorobenzene via the meta-cleavage pathway.  相似文献   

12.
Carbazole is a nitrogen-containing heteroaromatic compound that occurs as a widespread and mutagenic environmental pollutant. The 2'aminobiphenyl-2,3-diol 1,2-dioxygenase involved in carbazole degradation was purified to near electrophoretic homogeneity from Pseudomonas sp. LD2 by a combination of ion-exchange chromatography, ammonium sulfate precipitation, and hydrophobic interaction chromatography. This purification was challenging due to the great instability of the enzyme under many standard conditions. The enzyme was also purified to electrophoretic homogeneity from recombinant Escherichia coli expressing the 2'aminobiphenyl-2,3-diol 1,2-dioxygenase-encoding gene cloned from Pseudomonas sp. LD2. The molecular mass of the native enzyme was determined by gel filtration to be 70 kDa. The subunit molecular masses were determined to be 25 and 8 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the dioxygenase is an [alpha2beta2] heterotetramer. The optimal temperature and pH for the enzymatic production of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) from 2,3-dihydroxybiphenyl were determined to be 40 degrees C and 8.0, respectively. The maximum observed specific activity on 2,3-dihydroxybiphenyl was 48.1 mmol HOPDA min(-1) mg(-1). This indicated a maximum observed turnover rate of 360,000 molecules HOPDA enz(-1) s(-1). The K'm inhibition constant Ks and Vmax on 2,3 dihydroxybiphenyl were determined to be 5 microM, 37 microM, and 44 mmol min(-1) mg(-1), respectively. These results show that 2'aminobiphenyl-2,3-diol 1,2-dioxygenase is a meta-cleavage enzyme related to the 4,5-protocatechuate dioxygenase family, with comparable purification challenges posed by intrinsic enzyme instability.  相似文献   

13.
2-amino-5-carboxymuconic 6-semialdehyde is an unstable intermediate in the meta-cleavage pathway of 4-amino-3-hydroxybenzoic acid in Bordetella sp. strain 10d. In vitro, this compound is nonenzymatically converted to 2,5-pyridinedicarboxylic acid. Crude extracts of strain 10d grown on 4-amino-3-hydroxybenzoic acid converted 2-amino-5-carboxymuconic 6-semialdehyde formed from 4-amino-3-hydroxybenzoic acid by the first enzyme in the pathway, 4-amino-3-hydroxybenzoate 2,3-dioxygenase, to a yellow compound (epsilonmax = 375 nm). The enzyme in the crude extract carrying out the next step was purified to homogeneity. The yellow compound formed from 4-amino-3-hydroxybenzoic acid by this purified enzyme and purified 4-amino-3-hydroxybenzoate 2,3-dioxygenase in a coupled assay was identified as 2-hydroxymuconic 6-semialdehyde by GC-MS analysis. A mechanism for the formation of 2-hydroxymuconic 6-semialdehyde via enzymatic deamination and nonenzymatic decarboxylation is proposed based on results of spectrophotometric analyses. The purified enzyme, designated 2-amino-5-carboxymuconic 6-semialdehyde deaminase, is a new type of deaminase that differs from the 2-aminomuconate deaminases reported previously in that it primarily and specifically attacks 2-amino-5-carboxymuconic 6-semialdehyde. The deamination step in the proposed pathway differs from that in the pathways for 2-aminophenol and its derivatives.  相似文献   

14.
We have compared the sequence and gene order of meta-cleavage pathway operons from alpha- and gamma-subgroups of the Proteobacteria with operons from Burkholderia sp. strain RP007 which belongs to the beta-subgroup of the Proteobacteria. Burkholderia RP007 was isolated for its ability to degrade phenanthrene and contains two meta-cleavage operons. One exhibits a comparable gene order to previously characterised gamma-subgroup Proteobacterial (Pseudomonas) meta operons, whilst the other has distinctive features present in both alpha- and gamma-subgroup Proteobacterial (Sphingomonas and Pseudomonas) meta operons. Gene sequence conservation, highlighted by examining the phylogeny of Proteobacterial catechol 2,3-dioxygenase sequences, reveals that sequences generally cluster in a manner which correlates with the taxonomic grouping of the Proteobacterial subgroup from which they originated.  相似文献   

15.
Bacterial strain M213 was isolated from a fuel oil-contaminated soil in Idaho, USA, by growth on naphthalene as a sole source of carbon, and was identified as Rhodococcus opacus M213 by 16S rDNA sequence analysis and growth on substrates characteristic of this species. M213 was screened for growth on a variety of aromatic hydrocarbons, and growth was observed only on simple 1 and 2 ring compounds. No growth or poor growth was observed with chlorinated aromatic compounds such as 2,4-dichlorophenol and chlorobenzoates. No growth was observed by M213 on salicylate, and M213 resting cells grown on naphthalene did not attack salicylate. In addition, no salicylate hydroxylase activity was detected in cell free lysates, suggesting a pathway for naphthalene catabolism that does not pass through salicylate. Enzyme assays indicated induction of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase on different substrates. Total DNA from M213 was screened for hybridization with a variety of genes encoding catechol dioxygenases, but hybridization was observed only with catA (encoding catechol 1,2-dioxygenase) from R. opacus 1CP and edoD (encoding catechol 2,3-dioxygenase) from Rhodococcus sp. I1. Plasmid analysis indicated the presence of two plasmids (pNUO1 and pNUO2). edoD hybridized to pNUO1, a very large (approximately 750 kb) linear plasmid.  相似文献   

16.
The two-subunit meta-cleavage enzyme, 2'-aminobiphenyl-2,3-diol 1,2-dioxygenase (CarBaBb), from the carbazole degrader Pseudomonas resinovorans strain CA10 was purified to homogeneity from an Escherichia coli strain carrying the expression vector pUCA503, in which two copies of the carBaBb genes are tandemly linked. SDS-PAGE and gel filtration showed that CarB was a alpha2beta2-heterotetrameric enzyme with subunit molecular masses of approximately 10,000 for CarBa and 29,000 for CarBb. The optimum pH for activity was 8.5 and that of temperature was 35 degrees C. The CarB enzyme had a Km of 14 microM and a kcat/Km of 0.25 microM(-1) s(-1) for 2'-aminobiphenyl-2,3-diol, and the catalytic activities for biphenyl-type catecholic substrates were higher than those for monoaromatic catechol derivatives. The enzyme was originally isolated as a meta-cleavage enzyme for 2'-aminobiphenyl-2,3-diol involved in carbazole degradation, but the enzyme was highly specific for 2,3-dihydroxybiphenyl.  相似文献   

17.
A bacterial strain that grew on 4-amino-3-hydroxybenzoic acid was isolated from farm soil. The isolate, strain 10d, was identified as a species of Bordetella. Cell extracts of Bordetella sp. strain 10d grown on 4-amino-3-hydroxybenzoic acid contained an enzyme that cleaved this substrate. The enzyme was purified to homogeneity with a 110-fold increase in specific activity. The purified enzyme was characterized as a meta-cleavage dioxygenase that catalyzed the ring fission between C2 and C3 of 4-amino-3-hydroxybenzoic acid, with the consumption of 1 mol of O2 per mol of substrate. The enzyme was therefore designated as 4-amino-3-hydroxybenzoate 2,3-dioxygenase. The molecular mass of the native enzyme was 40 kDa based on gel filtration; the enzyme is composed of two identical 21-kDa subunits according to SDS/PAGE. The enzyme showed a high dioxygenase activity only for 4-amino-3-hydroxybenzoic acid. The Km and Vmax values for this substrate were 35 micro m and 12 micro mol.min-1.(mg protein)-1, respectively. Of the 2-aminophenols tested, only 4-aminoresorcinol and 6-amino-m-cresol inhibited the enzyme. The enzyme reported here differs from previously reported extradiol dioxygenases, including 2-aminophenol 1,6-dioxygenase, in molecular mass, subunit structure and catalytic properties.  相似文献   

18.
Four kinds of polychlorinated biphenyl (PCB)-degrading Rhodococcus sp. (TA421, TA431, HA99, and K37) have been isolated from termite ecosystem and under alkaline condition. The bph gene cluster involved in the degradation of PCB/biphenyl has been analyzed in strain TA421. This gene cluster was highly homologous to bph gene clusters in R. globerulus P6 and Rhodococcus sp. RHA1. In this study, we cloned and analyzed the bph gene cluster essential to PCB/biphenyl degradation from R. rhodochrous K37. The order of the genes and the sequence were different in K37 than in P6, RHA1, and TA421. The bphC8(K37) gene was more homologous to the meta-cleavage enzyme involved in phenanthrene metabolism than bphC genes involved in biphenyl metabolism. Two other Rhodococcus strains (HA99 and TA431) had PCB/biphenyl degradation gene clusters similar to that in K37. These findings suggest that these bph gene clusters evolved separately from the well-known bph gene clusters of PCB/biphenyl degraders.  相似文献   

19.
The present study describes the assimilation of phenanthrene by an aerobic bacterium, Ochrobactrum sp. strain PWTJD, isolated from municipal waste-contaminated soil sample utilizing phenanthrene as a sole source of carbon and energy. The isolate was identified as Ochrobactrum sp. based on the morphological, nutritional and biochemical characteristics as well as 16S rRNA gene sequence analysis. A combination of chromatographic analyses, oxygen uptake assay and enzymatic studies confirmed the degradation of phenanthrene by the strain PWTJD via 2-hydroxy-1-naphthoic acid, salicylic acid and catechol. The strain PWTJD could also utilize 2-hydroxy-1-naphthoic acid and salicylic acid, while the former was metabolized by a ferric-dependent meta-cleavage dioxygenase. In the lower pathway, salicylic acid was metabolized to catechol and was further degraded by catechol 2,3-dioxygenase to 2-hydroxymuconoaldehyde acid, ultimately leading to tricarboxylic acid cycle intermediates. This is the first report of the complete degradation of a polycyclic aromatic hydrocarbon molecule by Gram-negative Ochrobactrum sp. describing the involvement of the meta-cleavage pathway of 2-hydroxy-1-naphthoic acid in phenanthrene assimilation.  相似文献   

20.
Pseudomonas strain CF600 is able to utilize phenol and 3,4-dimethylphenol as sole carbon and energy source. We demonstrate that growth on these substrates is by virtue of plasmid-encoded phenol hydroxylase and a meta-cleavage pathway. Screening of a genomic bank, with DNA from the previously cloned catechol 2,3-dioxygenase gene of the TOL plasmid pWW0, was used in the identification of a clone which could complement a phenol-hydroxylase-deficient transposon insertion mutant. Deletion mapping and polypeptide production analysis identified a 1.2 kb region of DNA encoding a 39.5 kDa polypeptide which mediated this complementation. Enzyme activities and growth properties of Pseudomonas strains harbouring this fragment on a broad-host-range expression vector indicate that phenol hydroxylase is a multicomponent enzyme containing the 39.5 kDa polypeptide as one component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号