首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
A Pseudomonas 2,4-diacetylphloroglucinol (DAPG)-producing population that occurred naturally on the roots, in rhizosphere soil of Zea mays and in the nonrhizosphere soil was investigated in order to assess the microbial diversity at five stages of plant growth. A total of 1,716 isolates were obtained, and 188 of these isolates were able to produce DAPG. DAPG producers were isolated at each stage of plant growth, indicating that the maize rhizosphere is colonized by natural DAPG producers throughout development. The frequency of DAPG producers was very low in the first stage of plant growth and increased over time. An analysis of the level of biodiversity of the DAPG producers at the species level was performed by comparing the AluI restriction patterns of the 16S ribosomal DNAs (rDNAs) amplified by PCR from 167 isolates. This comparison allowed us to cluster the isolates into four amplified rDNA restriction analysis (ARDRA) groups, and the main group (ARDRA group 1) contained 89.8% of the isolates. The diversity of the 150 isolates belonging to ARDRA group 1 was analyzed by the random amplified polymorphic DNA (RAPD) technique. An analysis of RAPD patterns by a molecular variance method revealed that there was a high level of genetic diversity in this population and that the genetic diversity was related to plant age. Finally, we found that some of the DAPG producers, which originated from all stages of plant growth, had the same genotype. These DAPG producers could be exploited in future screening programs for biocontrol agents.  相似文献   

2.
A Pseudomonas 2,4-diacetylphloroglucinol (DAPG)-producing population that occurred naturally on the roots, in rhizosphere soil of Zea mays and in the nonrhizosphere soil was investigated in order to assess the microbial diversity at five stages of plant growth. A total of 1,716 isolates were obtained, and 188 of these isolates were able to produce DAPG. DAPG producers were isolated at each stage of plant growth, indicating that the maize rhizosphere is colonized by natural DAPG producers throughout development. The frequency of DAPG producers was very low in the first stage of plant growth and increased over time. An analysis of the level of biodiversity of the DAPG producers at the species level was performed by comparing the AluI restriction patterns of the 16S ribosomal DNAs (rDNAs) amplified by PCR from 167 isolates. This comparison allowed us to cluster the isolates into four amplified rDNA restriction analysis (ARDRA) groups, and the main group (ARDRA group 1) contained 89.8% of the isolates. The diversity of the 150 isolates belonging to ARDRA group 1 was analyzed by the random amplified polymorphic DNA (RAPD) technique. An analysis of RAPD patterns by a molecular variance method revealed that there was a high level of genetic diversity in this population and that the genetic diversity was related to plant age. Finally, we found that some of the DAPG producers, which originated from all stages of plant growth, had the same genotype. These DAPG producers could be exploited in future screening programs for biocontrol agents.  相似文献   

3.
Pseudomonas putida WCS358r, genetically modified to have improved activity against soil-borne pathogens, was released into the rhizosphere of wheat. Two genetically modified derivatives carried the phzor the phl biosynthetic gene loci and constitutively produced either the antifungal compound phenazine-1-carboxylic acid (PCA) or the antifungal and antibacterial compound 2,4-diacetylphloroglucinol (DAPG). In 1997 and 1998, effects of single introductions of PCA producing derivatives on the indigenous microflora were studied. A transient shift in the composition of the total fungal microflora, determined by amplified ribosomal DNA restiction analysis (ARDRA), was detected. Starting in 1999, effects of repeated introduction of genetically modified microorganisms (GMMs) were studied. Wheat seeds coated with the PCA producer, the DAPG producer, a mixture of the PCA and DAPG producers, or WCS358r, were sown and the densities, composition and activities of the rhizosphere microbial populations were measured. All introduced strains decreased from 107CFU per gram of rhizosphere sample to below the detection limit after harvest of the wheat plants. The phz genes were stably maintained in the PCA producers, and PCA was detected in rhizosphere extracts of plants treated with this strain or with the mixture of the PCA and DAPG producers. The phl genes were also stably maintained in the DAPG producing derivative of WCS358r. Effects of the genetically modified bacteria on the rhizosphere fungi and bacteria were analyzed by using amplified ribosomal DNA restriction analysis. Introduction of the genetically modified bacterial strains caused a transient change in the composition of the rhizosphere microflora. However, introduction of the GMMs did not affect the several soil microbial activities that were investigated in this study. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The biodiversity of wheat associated bacteria was deciphered from the peninsular zone of India. A total of 264 isolated bacteria were analyzed through amplified ribosomal DNA restriction analysis (ARDRA, using three restriction enzymes Alu I, Msp I and Hae III, which led to the clustering of these isolates into 12–16 groups for the different sites at >75% similarity index, adding up to 70 groups). 16S rRNA gene based phylogenetic analysis, revealed that all the bacteria belonged to three phyla Proteobacteria, Firmicutes, and Actinobacteria of 32 distinct species of 15 genera namely: Achromobacter, Alcaligenes, Arthrobacter, Bacillus, Delftia, Enterobacter, Exiguobacterium, Klebsiella, Methylobacterium, Micrococcus, Paenibacillus, Pseudomonas, Rhodobacter, Salmonella and Staphylococcus. Representative strains from each cluster were screened in vitro for plant growth promoting traits. Among plant growth promoting activities, siderophore producers were highest (15%), when compared to indole acetic acid producers (13%), Zn-solubilizers (11%), P-solubilizers (11%), ammonia (10%), hydrogen cyanide producers (9%), biocontrol (8%), N2-fixers (7%), 1-aminocyclopropane-1-carboxylate deaminase (6%), GA producers (6%) and K-solubilizers (5%). Among 32 representative strains, Alcaligenes faecalis, Arthrobacter sp., Bacillus siamensis, Bacillus subtilis, Delftia acidovorans, Methylobacterium mesophilicum, Methylobacterium sp., Pseudomonas poae, Pseudomonas putida, and Pseudomonas stutzeri exhibited more than six different plant growth promoting activities at high temperature. Thermotolerant bacterial isolates may have application as inoculants for plant growth promotion and biocontrol agents for crops growing at high temperature conditions.  相似文献   

5.
Polymerase chain reaction studies showed that naphthalene-utilizing bacteria isolated from various localities of Belarus most often contained Nah plasmids of the P-9 incompatibility group and plasmids of indefinite systematics. The conventional incompatibility test and restriction enzyme analysis revealed three new IncP-9 subgroups: ζ, η, and IncP-9-like. In addition to the known nucleotide sequences of nahG and nahAc, two novel nahG variants were revealed by a restriction enzyme analysis of amplification products. An amplified rDNA restriction enzyme analysis (ARDRA) demonstrated that the native hosts of IncP-9 Nah plasmids were fluorescent bacteria of the genus Pseudomonas (P. fluorescens, P. putida, P. aeruginosa, and Pseudomonas sp.) and nonfluorescent bacteria of indefinite systematics.  相似文献   

6.
Pseudomonas species are plant, animal, and human pathogens; exhibit plant pathogen-suppressing properties useful in biological control; or express metabolic versatilities valued in biotechnology and bioremediation. Specific detection of Pseudomonas species in the environment may help us gain a more complete understanding of the ecological significance of these microorganisms. The objective of this study was to develop a PCR protocol for selective detection of Pseudomonas (sensu stricto) in environmental samples. Extensive database searches identified a highly selective PCR primer pair for amplification of Pseudomonas 16S rRNA genes. A protocol that included PCR amplification and restriction analysis, a general cloning and sequencing strategy, and phylogenetic analyses was developed. The PCR protocol was validated by testing 50 target and 14 nontarget pure cultures, which confirmed the selectivity to 100%. Further validation used amplification of target sequences from purified bulk soil DNA followed by cloning of PCR products. Restriction analysis with HaeIII revealed eight different fragmentation patterns among 36 clones. Sequencing and phylogenetic analysis of 8 representative clones indicated that 91.7% of the products were derived from target organisms of the PCR protocol. Three patterns, representing only 8.3% of the 36 clones, were derived from non-Pseudomonas or chimeric PCR artifacts. Three patterns, representing 61.1% of the clones, clustered with sequences of confirmed Pseudomonas species, whereas two patterns, representing 30.6% of the clones, formed a novel phylogenetic cluster closely associated with Pseudomonas species. The results indicated that the Pseudomonas-selective PCR primers were highly specific and may represent a powerful tool for Pseudomonas population structure analyses and taxonomic confirmations.  相似文献   

7.
8.
Genetic diversity among 43 petroleum hydrocarbon-degrading Pseudomonas belonging to four different species and the type strain Pseudomonas aeruginosa MTCC1034 was assessed by using restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR)-amplified 16S–23S rDNA intergenic spacer regions (ISRs) polymorphism. PCR amplification from all Pseudomonas species yielded almost identical ISR amplicons of “?” 800 bp and in nested PCR of “?” 550 bp. The RFLP analysis with MboI and AluI revealed considerable intraspecific variations within the Pseudomonas species. The dendrogram constructed on the basis of the PCR-RFLP patterns of 16S–23S rDNA intergenic spacer regions differentiated all the species into seven different clusters.  相似文献   

9.
In biocontrol Pseudomonads, phlD is an essential gene involved in the biosynthesis of 2,4-diacetylphloroglucinol (DAPG). HaeIII restriction of amplified phlD gene, previously proposed as the most discriminant analysis, showed no polymorphism among 144 Pseudomonas strains isolated from maize roots. However, these strains fell into three statistically significant DAPG production level groups. phlD sequences of 13 strains belonging to the three DAPG groups revealed a KspI restriction site only in good DAPG-producing strains. This result was confirmed on the 144 strains, 82 of which were identified as good-DAPG producers by both biochemical and amplified phlD KspI restriction analysis. They are candidates as potential biocontrol agents.  相似文献   

10.
A Rhizobium–legume interaction stands out from other plant–microbe interactions as one in which a true developmental mutualism occurs. To study the genotypic diversity in native population of rhizobia-nodulating Vicia faba plants, we retrieved 64 rhizobial isolates from root nodules of faba bean grown in pots holding soils collected from arid and semi-arid regions of the state of Haryana, India. The amplification of nodC in all the isolates authenticated these as rhizobia. The nitrogen-fixing potential of the isolates was tested by the amplification of the nifH gene. Only 50 isolates out of 64 showed nifH gene amplification. The characterization of the isolates by amplified 16S rDNA restriction analysis (ARDRA) categorized these into 36 16S rDNA genotypes using a combination of MspI and HaeIII restriction enzymes. Majority of the isolates resolved into separate genotypes, indicating a wide diversity among them, which seemed to arise from their geographical origin and soil characteristics. These findings may be immensely useful in agriculture towards developing rhizobial inoculants specific for faba beans under arid and semi-arid conditions.  相似文献   

11.
The genotypic diversity of antibiotic-producing Pseudomonas spp. provides an enormous resource for identifying strains that are highly rhizosphere competent and superior for biological control of plant diseases. In this study, a simple and rapid method was developed to determine the presence and genotypic diversity of 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas strains in rhizosphere samples. Denaturing gradient gel electrophoresis (DGGE) of 350-bp fragments of phlD, a key gene involved in DAPG biosynthesis, allowed discrimination between genotypically different phlD+ reference strains and indigenous isolates. DGGE analysis of the phlD fragments provided a level of discrimination between phlD+ genotypes that was higher than the level obtained by currently used techniques and enabled detection of specific phlD+ genotypes directly in rhizosphere samples with a detection limit of approximately 5 × 103 CFU/g of root. DGGE also allowed simultaneous detection of multiple phlD+ genotypes present in mixtures in rhizosphere samples. DGGE analysis of 184 indigenous phlD+ isolates obtained from the rhizospheres of wheat, sugar beet, and potato plants resulted in the identification of seven phlD+ genotypes, five of which were not described previously based on sequence and phylogenetic analyses. Subsequent bioassays demonstrated that eight genotypically different phlD+ genotypes differed substantially in the ability to colonize the rhizosphere of sugar beet seedlings. Collectively, these results demonstrated that DGGE analysis of the phlD gene allows identification of new genotypic groups of specific antibiotic-producing Pseudomonas with different abilities to colonize the rhizosphere of sugar beet seedlings.  相似文献   

12.
A study of the genetic diversity of populations of Saccharomyces cerevisiae was conducted in ten different cachaça producers (alambiques) in the southern state of Minas Gerais, Brazil. A total of 106 isolates were identified by PCR using the primer SCREC114, specific to S. cerevisiae, by pulsed-field gel electrophoresis (PFGE) and by restriction fragment polymorphism of mitochondrial DNA analysis (RFLP-mtDNA). PCR showed a product of amplification to 61 isolates, enabling a rapid identification of S. cerevisiae in different alambiques. Nine different profiles were found by PFGE; all the yeasts identified as S. cerevisiae by PCR had profiles similar to that of the marker S. cerevisiae, highlighting the specificity of primer SCREC114. RFLP-mtDNA, using four different enzymes, enabled the grouping of strains of S. cerevisiae, with 80%–100% similarity. Some alambiques that had a higher frequency of S. cerevisiae characterized by PCR and PFGE, had a lower level of genetic diversity determined by RFLP-mtDNA, indicating the ability of these strains to lead the fermentative process.  相似文献   

13.
Among 1,236 colony-forming units (CFU) associated with 11 species of marine sponges collected from a Brazilian coast, a total of 100 morphologically different bacterial strains were analyzed. The phylogenetic diversity of the bacterial isolates was assessed by 16S rRNA gene amplification—restriction fragment length polymorphism (RFLP) analysis, using AluI restriction endonuclease. The RFLP fingerprinting resulted in 21 different patterns with good resolution for the identification of the bacterial isolates at the genus level. The genus Bacillus was the most commonly encountered genus, followed by Kocuria. Regarding the relationship between the morphotypes and species of marine sponges, Mycale microsigmatosa presented major diversity, followed by Dragmacidon reticulatum and Polymastia janeirensis. An antibiotic susceptibility profile of the 100 sponge-associated bacterial strains was determined by the disk diffusion method, and we observed a variable resistance profile, with 15 % of the bacteria being multiresistant. In addition, 71 of 100 strains were able to produce biofilm. These 71 strains were divided into 20 strong biofilm producers, 10 moderate biofilm producers, and 41 weak biofilm producers. The plasmid profile of the 100 bacterial strains was analyzed and 38 (38 %) of these samples possessed one or more plasmids. Studies like this are important to increase the information on these associated bacteria found off the coastline of Brazil, a place which has rich biodiversity that is still unknown.  相似文献   

14.
The genotypic diversity that occurs in natural populations of antagonistic microorganisms provides an enormous resource for improving biological control of plant diseases. In this study, we determined the diversity of indigenous 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. occurring on roots of wheat grown in a soil naturally suppressive to take-all disease of wheat. Among 101 isolates, 16 different groups were identified by random amplified polymorphic DNA (RAPD) analysis. One RAPD group made up 50% of the total population of DAPG-producing Pseudomonas spp. Both short- and long-term studies indicated that this dominant genotype, exemplified by P. fluorescens Q8r1-96, is highly adapted to the wheat rhizosphere. Q8r1-96 requires a much lower dose (only 10 to 100 CFU seed−1 or soil−1) to establish high rhizosphere population densities (107 CFU g of root−1) than Q2-87 and 1M1-96, two genotypically different, DAPG-producing P. fluorescens strains. Q8r1-96 maintained a rhizosphere population density of approximately 105 CFU g of root−1 after eight successive growth cycles of wheat in three different, raw virgin soils, whereas populations of Q2-87 and 1M1-96 dropped relatively quickly after five cycles and were not detectable after seven cycles. In short-term studies, strains Q8r1-96, Q2-87, and 1M1-96 did not differ in their ability to suppress take-all. After eight successive growth cycles, however, Q8r1-96 still provided control of take-all to the same level as obtained in the take-all suppressive soil, whereas Q2-87 and 1M1-96 gave no control anymore. Biochemical analyses indicated that the superior rhizosphere competence of Q8r1-96 is not related to in situ DAPG production levels. We postulate that certain rhizobacterial genotypes have evolved a preference for colonization of specific crops. By exploiting diversity of antagonistic rhizobacteria that share a common trait, biological control can be improved significantly.  相似文献   

15.
16.
Genetic diversity among 27 isolates (23 from chickpea and 4 from other host crops) of Rhizoctonia bataticola representing 11 different states of India was determined by random amplified polymorphic DNA (RAPD), internal transcribed spacer restriction fragment length polymorphism (ITS-RFLP) and ITS sequencing. The isolates showed variability in virulence test. Unweighted paired group method with arithmetic average cluster analysis was used to group the isolates into distinct clusters. The clusters generated by RAPD grouped all the isolates into six categories at 40% genetic similarity. High level of diversity was observed among the isolates of different as well as same state. Some of the RAPD (OPN 4, OPN 12, and OPN 20) markers clearly distinguished majority of the isolates into the area specific groups. The ITS I, 5.8rDNA and ITS II regions of 11 isolates representing different RAPD groups were amplified with primers ITS 1 and ITS 4 and digested with seven restriction enzymes. The restriction enzymes DraI, MboI, RsaI, and AluI were found to be suitable for differentiating the isolates into five categories by showing isolate specific ITS-RFLP patterns. The isolates were variable in their nucleotide sequences of the ITS regions. This is the first study on genetic diversity among chickpea isolates of R. bataticola.  相似文献   

17.
Wilt and root rot are the major constraints in chickpea production and very difficult to manage through agrochemicals. Hence, for an ecofriendly and biological management, 240 strains of Bacillus and Bacillus derived genera were isolated from chickpea rhizosphere, further narrowed down to 14 strains on the basis of in vitro production of indole acetic acid, siderophore, phosphate solubilization, hydrolytic enzymes and were evaluated for antagonism against chickpea pathogens (Fusarium oxysporum f. sp. ciceri race 1, F. solani and Macrophomina phaseolina). The strains were identified on the basis of physiological characters and 16S RNA gene sequencing. The genotypic comparisons of strains were determined by BOX-polymerase chain reaction profiles and amplified rDNA restriction analysis. These isolates were evaluated in greenhouse assay in which B. subtilis (B-CM191, B-CV235, B-CL-122) proved to be effective in reducing wilt incidence and significant enhancement in growth (root and shoot length) and dry matter of chickpea plants. PCR amplification of bacillomycin (bmyB) and β-glucanase genes suggests that amplified genes from the Bacillus could have a role to further define the diversity, ecology, and biocontrol activities in the suppression of soil-borne pathogens.  相似文献   

18.
19.
Indigenous populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing fluorescent Pseudomonas spp. that occur naturally in suppressive soils are an enormous resource for improving biological control of plant diseases. Over 300 isolates of 2,4-DAPG-producing fluorescent Pseudomonas spp. were isolated from the rhizosphere of pea plants grown in soils that had undergone pea or wheat monoculture and were suppressive to Fusarium wilt or take-all, respectively. Representatives of seven genotypes, A, D, E, L, O, P, and Q, were isolated from both soils and identified by whole-cell repetitive sequence-based PCR (rep-PCR) with the BOXA1R primer, increasing by three (O, P, and Q) the number of genotypes identified previously among a worldwide collection of 2,4-DAPG producers. Fourteen isolates representing eight different genotypes were tested for their ability to colonize the rhizosphere of pea plants. Population densities of strains belonging to genotypes D and P were significantly greater than the densities of other genotypes and remained above log 6.0 CFU (g of root)−1 over the entire 15-week experiment. Genetic profiles generated by rep-PCR or restriction fragment length polymorphism analysis of the 2,4-DAPG biosynthetic gene phlD were predictive of the rhizosphere competence of the introduced 2,4-DAPG-producing strains.  相似文献   

20.
Random amplified polymorphic DNA (RAPD) was used for identification and assessment of genetic diversity between isolates of Streptomyces from soil. Genomic DNA from 18 Streptomyces isolates and 2 reference strains were amplified using four different 10-mer primers. Different DNA fingerprinting patterns were obtained for all the isolates. Electrophoretic and cluster analysis of the amplification products revealed incidence of polymorphism among the isolates and none of them was identical to the reference strains although there were some common amplification bands. Two highly divergent groups were determined among the isolates. The results indicate that RAPD is an efficient method for discriminating and studying genetic diversity of Streptomyces isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号