首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work describes the characterization of recombinantEsherichia coli ATCC 11303 (pLOI 297) in the production of ethanol from cellulose and xylose. We have examined the fermentation of glucose and xylose, both individually and in mixtures, and the selectivity of ethanol production under various conditions of operation. Xylose metabolism was strongly inhibited by the presence of glucose. Ethanol was a strong inhibitor of both glucose and xylose fermentations; the maximum ethanol levels achieved at 37°C and 42°C were about 50 g/l and 25 g/l respectively. Simmultaneous sacharification and fermentation of cellulose with recombinantE. coli and exogenous cellulose showed a high ethanol yield (84% of theoretical) in the hydrolysis regime of pH 5.0 and 37°C. The selectivity of organic acid formation relative to that of ethanol increased at extreme levels of initial glucose concentration; production of succinic and acetic acids increased at low levels of glucose ( <1 g/l), and lactic acid production increased when initial glucose was higher than 100 g/l.  相似文献   

2.
Summary The effect of Mg+2 on Pichia stipitis growth and ethanol production was studied under condition of constant oxygen uptake rate (OUR) . Biomass/xylose and biomass/Mg+2 yields increased with Mg+2 concentration with a maximum value at Mg+2 4mM, ethanol being the main product obtained. At low Mg+2 levels (ImM) 49 % of carbon flux to ethanol was redirected to xylitol production, accomplished through NADH intracellular accumulation.  相似文献   

3.
Previously, we reported that pyruvate production was markedly improved in TBLA-1, an H+-ATPase-defective Escherichia coli mutant derived from W1485lip2, a pyruvate-producing E. coli K-12 strain. TBLA-1 produced more than 30 g/l pyruvate from 50 g/l glucose by jar fermentation, while W1485lip2 produced only 25 g/l pyruvate (Yokota et al. in Biosci Biotechnol Biochem 58:2164–2167, 1994b). In this study, we tested the ability of TBLA-1 to produce alanine by fermentation. The alanine dehydrogenase (ADH) gene from Bacillus stearothermophilus was introduced into TBLA-1, and direct fermentation of alanine from glucose was carried out. However, a considerable amount of lactate was also produced. To reduce lactate accumulation, we knocked out the lactate dehydrogenase gene (ldhA) in TBLA-1. This alanine dehydrogenase-expressing and lactate dehydrogenase-defective mutant of TBLA-1 produced 20 g/l alanine from 50 g/l glucose after 24 h of fermentation. The molar conversion ratio of glucose to alanine was 41%, which is the highest level of alanine production reported to date. This is the first report to show that an H+-ATPase-defective mutant of E. coli can be used for amino acid production. Our results further indicate that H+-ATPase-defective mutants may be used for fermentative production of various compounds, including alanine.  相似文献   

4.
Summary A cellulose hydrolysate from Aspen wood, containing mainly glucose, was fermented into ethanol by a thermotolerant strain MSN77 of Zymomonas mobilis. The effect of the hydrolysate concentration on fermentation parameters was investigated. Growth parameters (specific growth rate and biomass yield) were inhibited at high hydrolysate concentrations. Catabolic parameters (specific glucose uptake rate, specific ethanol productivity and ethanol yield) were not affected. These effects could be explained by the increase in medium osmolality. The results are similar to those described for molasses based media. Strain MSN77 could efficiently ferment glucose from Aspen wood up to a concentration of 60 g/l. At higher concentration, growth was inhibited.Nomenclature S glucose concentration (g/l) - X biomass concentration (g/l) - P ethanol concentration (g/l) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - YINX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

5.
Acid-hydrolysis of cellulosic pyrolysate to glucose and its fermentation to ethanol were investigated. The maximum glucose yield (17.4%) was obtained by the hydrolysis with 0.2 mol/l sulfuric acid using autoclaving at 121 degrees C for 20 min. The fermentation by Saccharomyces cerevisiae of a hydrolysate medium containing 31.6 g/l glucose gave 14.2 g/l ethanol after 24 h, whereas the fermentation of the medium containing 31.6 g/l pure glucose gave 13.7 g/l ethanol after 18 h. The results showed that acid-hydrolyzed pyrolysate could be used for ethanol production. Different nitrogen sources were evaluated and the best ethanol concentration (15.1 g/l) was achieved by single urea. S. cerevisiae (R) was obtained by adaptation of S. cerevisiae to the hydrolysate medium for 12 times, and 40.2 g/l ethanol was produced by it in the fermentation with the hydrolysate medium containing 95.8 g/l glucose, which was about 47% increase in ethanol production compared to its parent strain.  相似文献   

6.
The direct fermentation of cellulosic biomass to ethanol has long been a desired goal. To this end, we screened the environment for fungal strains capable of this conversion when grown on minimal medium. One strain, identified as a member of the genus Trichoderma and designated strain A10, was isolated from cow dung and initially produced about 0.4 g ethanol l(-1). This strain cannot grow on any substrate under anaerobic conditions, but can ferment microcrystalline cellulose or several sugars to ethanol. Ethanol accumulation was eventually increased, by selection and the use of a vented fermentation flask, to 2 g l(-1) when the fermentation was carried out in submerged culture in minimal medium. The highest levels of ethanol, >5.0 g l(-1), were obtained by the fermentation of glucose. Little ethanol was produced by the fermentation of xylose, although other fermentation products such as succinate and acetate were observed. Strain A10 was also found to utilize (aerobically) a wide range of carbon sources. In addition, auxotrophic mutants were generated and used to demonstrate parasexuality by complementation between auxotrophs and between morphological mutants. The ability of this strain to use a wide variety of carbohydrates (including crystalline cellulose) combined with its minimal nutrient requirements and the availability of a genetic system suggests that the strain merits further investigation of its ability to convert biomass to ethanol.  相似文献   

7.
When cells of Saccharomyces cerevisiae were grown aerobically under glucose-repressed conditions, ethanol production displayed a hyperbolic relationship over a limited range of magnesium concentrations up to around 0.5 mM. A similar relationship existed between available Mg2+ and ethanol yield, but over a narrower range of Mg2+ concentrations. Cellular demand for Mg2+ during fermentation was reflected in the accumulation patterns of Mg2+ by yeast cells from the growth medium. Entry of cells into the stationary growth phase and the time of maximum ethanol and minimum sugar concentration correlated with a period of maximum Mg2+ transport by yeast cells. The timing of Mg2+ transport fluxes by S. cerevisiae is potentially useful when conditioning yeast seed inocula prior to alcohol fermentations. Received 04 March 1996/ Accepted in revised form 21 August 1996  相似文献   

8.
The acid hydrolysis of cellulosic pyrolysate to glucose and its fermentation to ethanol were investigated. The maximum glucose yield (17.4%) was obtained by the hydrolysis with 0.2 mol sulfuric acid per liter pyrolysate using autoclaving at 121 degrees C for 20 min. The fermentation by Saccharomyces cerevisiae of a hydrolysate medium containing 31.6 g/l glucose gave 14.2 g/l ethanol in 24 h, whereas the fermentation of the medium containing 31.6 g/l pure glucose gave 13.7 g/l ethanol in 18 h. The results showed that the acid-hydrolyzed pyrolysate could be used for ethanol production. Different nitrogen sources were evaluated and the best ethanol concentration (15.1 g/l) was achieved by single urea. S. cerevisiae (R) was obtained by adaptation of S. cerevisiae to the hydrolysate medium for 12 times, and 40.2 g/l ethanol was produced by S. cerevisiae (R) in the fermentation with the hydrolysate medium containing 95.8 g/l glucose, which was about 47% increase in ethanol production compared to its parent strain.  相似文献   

9.
2-Phenylethanol (2-PE) can be produced from l-phenylalanine (l-Phe) with the oxidation degradation of ethanol by active dry yeast. In this study, the catalysis effect of ethanol on biotransforming l-Phe into 2-PE by yeast was evaluated and optimized. The results indicated that increasing ethanol concentration was beneficial for enhancing 2-PE concentration but lowered the 2-PE productivity. Initial ethanol concentration above 25 g/l could strongly inhibit the 2-PE production. To obtain 2-PE with desirable concentrations with an economical operation mode, three fed-batch biotransformation operation methods using ethanol or/and glucose were carried out in a solid–liquid two-phase system. When using ethanol alone with the initial concentration of 10 g/l, the total concentration and overall productivity of 2-PE were 7.6 g/l and 0.065 g l−1 h−1, respectively. Furthermore, an experiment with controlled glucose solely (higher than 2 g/l) was finished. In this case, phenylacetaldehyde (PA) was detected along with ethanol accumulation, suggesting that reaction of PA → 2-PE in Ehrlich pathway was inhibited. To further enhance 2-PE production by using glucose only, a novel operation strategy to simultaneously control rates of glucose glycolysis and ethanol oxidative degradation with the aid of ISPR techniques was developed. With this strategy, 2-PE concentration and yield based on glucose consumption reached a higher level of 14.8 g/l and 0.12 g-PE/g-glucose, respectively, and these are the highest values reported up to date with the fed-batch biotransformation operation mode.  相似文献   

10.
In order to achieve high butanol production by Clostridium saccharoperbutylacetonicum N1-4, the effect of lactic acid on acetone–butanol–ethanol fermentation and several fed-batch cultures in which lactic acid is fed have been investigated. When a medium containing 20 g/l glucose was supplemented with 5 g/l of closely racemic lactic acid, both the concentration and yield of butanol increased; however, supplementation with more than 10 g/l lactic acid did not increase the butanol concentration. It was found that when fed a mixture of lactic acid and glucose, the final concentration of butanol produced by a fed-batch culture was greater than that produced by a batch culture. In addition, a pH-controlled fed-batch culture resulted in not only acceleration of lactic acid consumption but also a further increase in butanol production. Finally, we obtained 15.5 g/l butanol at a production rate of 1.76 g/l/h using a fed-batch culture with a pH-stat continuous lactic acid and glucose feeding method. To confirm whether lactic acid was converted to butanol by the N1-4 strain, we performed gas chromatography–mass spectroscopy (GC-MS) analysis of butanol produced by a batch culture during fermentation in a medium containing [1,2,3-13C3] lactic acid as the initial substrate. The results of the GC-MS analysis confirmed the bioconversion of lactic acid to butanol.  相似文献   

11.
《Process Biochemistry》2014,49(12):2030-2038
The significance of metal ion supplementation in the fermentation medium on the structure and anti-tumor activity of Tuber polysaccharides was systematically studied in the submerged fermentation of Tuber melanosporum. The lowest weight-average molecular weight (Mw) (i.e., 115.3 × 104 g/mol) of intracellular polysaccharides (IPS) was obtained when Mg2+ and K+ was added in the fermentation medium. The IPS with the lower Mw exhibited a higher inhibition ratio against S-180 tumor cells. The compact conformation of extracellular polysaccharides (EPS) was formed when only K+ was supplied in the fermentation medium. Interestingly, EPS with compact conformation exhibited a higher inhibition ratio (i.e., 59.2%) than EPS with branched polymer chain (i.e., 9.2%) against A549 tumor cells. The highest inhibition ratio for EPS with α-glycosidic linkages against the tumor cell line HepG2 reached 32.2% when Mg2+ or K+ was supplied in the fermentation medium. The addition of metal ion Mg2+, K+, and their combination to the fermentation medium is a vital factor affecting the structures of Tuber polysaccharides, which further determine their anti-tumor activities. The information obtained in this work will be useful for the efficient and directed production of polysaccharides with anti-tumor activities by the submerged fermentation of edible fungi mycelium.  相似文献   

12.
13.
In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between optimal temperatures and inhibitory glucose concentrations on the one hand (SHF) vs. sub-optimal temperatures and ethanol-inhibited cellulolysis on the other (SSF). Although the impact of ethanol on cellobiose hydrolysis was found to be negligible, formation of glucose and cellobiose from cellulose were found to be significantly inhibited by ethanol. A previous model for the kinetics of enzymatic cellulose hydrolysis was, therefore, extended with enzyme inhibition by ethanol, thus allowing a rational evaluation of SSF and SHF. The model predicted SSF processing to be superior. The superiority of SSF over SHF (separate hydrolysis and fermentation) was confirmed experimentally, both with respect to ethanol yield on glucose (0.41 g g?1 for SSF vs. 0.35 g g?1 for SHF) and ethanol production rate, being 30% higher for an SSF type process. High conversion rates were found to be difficult to achieve since at a conversion rate of 52% in a SSF process the reaction rate dropped to 5% of its initial value. The model, extended with the impact of ethanol on the cellulase complex proved to predict reaction progress accurately.  相似文献   

14.
Summary Growth and ethanol production by three strains (MSN77, thermotolerant, SBE15, osmotolerant and wild type ZM4) of the bacterium Zymomonas mobilis were tested in a rich medium containing the hexose fraction from a cellulose hydrolysate (Aspen wood). The variations of yield and kinetic parameters with fermentation time revealed an inhibition of growth by the ethanol produced. This inhibition may result from the increase in medium osmolality due to ethanol formation from glucose.Nomenclature S glucose concentration (g/L) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - Qp volumetric ethanol productivity (g/L.h) - QX volumetric biomass productivity (g/L.h) - YX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

15.
《Process Biochemistry》2007,42(1):40-45
In this work, optimizing trace element composition was attempted as a primary strategy to improve surfactin production from Bacillus subtilis ATCC 21332. Statistical experimental design (Taguchi method) was applied for the purpose of identifying optimal trace element composition in the medium. Of the five trace elements examined, Mg2+, K+, Mn2+, and Fe2+ were found to be more significant factors affecting surfactin production by the B. subtilis strain. In the absence of Mg2+ or K+, surfactin yield decreased to 0.4 g/l, which was only 25% of the value obtained from the control run. When Mn2+ and Fe2+ were both absent, the production yield also dropped to ca. 0.6 g/l, approximately one-third of the control value. However, when only one of the two metal ions (Fe2+ or Mn2+) was missing, the B. subtilis ATCC 21332 strain was able to remain over 80% of original surfactin productivity, suggesting that some interactive correlations among the selected metal ions may involve. Taguchi method was thus applied to reveal the interactive effects of Mg2+, K+, Mn2+, Fe2+ on surfactin production. The results show that interaction of Mg2+ and K+ reached significant level. By further optimizing Mg2+ and K+ concentrations in the medium, the surfactin production was boosted to 3.34 g/l, which nearly doubled the yield obtained from the original control.  相似文献   

16.
Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood to produce ethanol and very enriched fructose syrup from glucose/fructose mixtures through the selective fermentation of glucose. A maximum ethanol productivity of 21.9 g/l-h was attained from a feed containing 9.7% (w/v) glucose and 9.9% (w/v) fructose. An ethanol concentration, glucose conversion and fructose yield of 29.6 g/l, 62% and 99% were obtained, respectively. This resulted in a final fructose/glucose ratio of 2.7. At lower ethanol productivity levels the fructose/glucose ratio increases, as does the ethanol concentration in the effluent. The addition of 30 mg/l oleic acid to the medium increased the ethanol productivity and its concentration by 13% at a dilution rate of 0.74 h?1.  相似文献   

17.
This research was designed to maximize ethanol production from a glucose-xylose sugar mixture (simulating a sugar cane bagasse hydrolysate) by co-fermentation with Zymomonas mobilis and Pachysolen tannophilus. The volumetric ethanol productivity of Z. mobilis with 50 g glucose/l was 2.87 g/l/h, giving an ethanol yield of 0.50 g/g glucose, which is 98% of the theoretical. P. tannophilus when cultured on 50 g xylose/l gave a volumetric ethanol productivity of 0.10 g/l/h with an ethanol yield of 0.15 g/g xylose, which is 29% of the theoretical. On optimization of the co-fermentation with the sugar mixture (60 g glucose/l and 40 g xylose/l) a total ethanol yield of 0.33 g/g sugar mixture, which is 65% of the theoretical yield, was obtained. The co-fermentation increased the ethanol yield from xylose to 0.17 g/g. Glucose and xylose were completely utilized and no residual sugar was detected in the medium at the end of the fermentation. The pH of the medium was found to be a good indicator of the fermentation status. The optimum conditions were a temperature of 30°C, initial inoculation with Z. mobilis and incubation with no aeration, inactivation of bacterium after the utilization of glucose, followed by inoculation with P. tannophilus and incubation with limited aeration.  相似文献   

18.
Wood hydrolysate used for ethanol production by two strains ofFusarium oxysporum contained 2.3% (w/v) reducing sugars (xylose and glucose). Ethanol production at the optimum reducing sugar concentration of 54.8 g/l medium, at pH 5.5, and 30°C was 12.3 g/l and 11.7 g/l byF. oxysporum D-140 and NCIM-1072, respectively in shake flasks during 96 h fermentation. The maximum production of ethanol under optimum cultural conditions, and in the presence of yeast extract plus minerals, was 13.2 g/l medium byF. oxysporum D-140 over 108 h fermentation.
Résumé L'hydrolysat de bois utilisé pour la production d'éthanol par deux souches deFusarium oxysporum contenait 2.3% (poids/vol.) de sucres réducteurs (xylose et glucose). La production d'éthanol, à la concentration optimum en sucres réducleurs de 54.8 g par litre de milieu à pH 5.5 et à 30°C était de 12.3 g/l et 11.7 g/l respectivement chezF. oxysporum D-140 et NCIM-1072, en flacons agités pendant 96 h de fermentation. La production maximum d'éthanol, dans les conditions optimum de culture, et en prosence d'extrait de levure et de minéraux a mit de 13.2 g par litre de milieu chezF. oxysporum D-140 en 108 h de lermentation.
  相似文献   

19.
Ethanol production derived from Saccharomyces cerevisiae fermentation of a hydrolysate from floriculture waste degradation was studied. The hydrolysate was produced from Chrysanthemum (Dendranthema grandiflora) waste degradation by Pleurotus ostreatus and characterized to determine the presence of compounds that may inhibit fermentation. The products of hydrolysis confirmed by HPLC were cellobiose, glucose, xylose and mannose. The hydrolysate was fermented by S. cerevisiae, and concentrations of biomass, ethanol, and glucose were determined as a function of time. Results were compared to YGC modified medium (yeast extract, glucose and chloramphenicol) fermentation. Ethanol yield was 0.45 g g?1, 88 % of the maximal theoretical value. Crysanthemum waste hydrolysate was suitable for ethanol production, containing glucose and mannose with adequate nutrients for S. cerevisiae fermentation and low fermentation inhibitor levels.  相似文献   

20.

Background

Cellulases continue to be one of the major costs associated with the lignocellulose hydrolysis process. Clostridium thermocellum is an anaerobic, thermophilic, cellulolytic bacterium that produces cellulosomes capable of efficiently degrading plant cell walls. The end-product cellobiose, however, inhibits degradation. To maximize the cellulolytic ability of C. thermocellum, it is important to eliminate this end-product inhibition.

Results

This work describes a system for biological saccharification that leads to glucose production following hydrolysis of lignocellulosic biomass. C. thermocellum cultures supplemented with thermostable beta-glucosidases make up this system. This approach does not require any supplementation with cellulases and hemicellulases. When C. thermocellum strain S14 was cultured with a Thermoanaerobacter brockii beta-glucosidase (CglT with activity 30 U/g cellulose) in medium containing 100 g/L cellulose (617 mM initial glucose equivalents), we observed not only high degradation of cellulose, but also accumulation of 426 mM glucose in the culture broth. In contrast, cultures without CglT, or with less thermostable beta-glucosidases, did not efficiently hydrolyze cellulose and accumulated high levels of glucose. Glucose production required a cellulose load of over 10 g/L. When alkali-pretreated rice straw containing 100 g/L glucan was used as the lignocellulosic biomass, approximately 72% of the glucan was saccharified, and glucose accumulated to 446 mM in the culture broth. The hydrolysate slurry containing glucose was directly fermented to 694 mM ethanol by addition of Saccharomyces cerevisiae, giving an 85% theoretical yield without any inhibition.

Conclusions

Our process is the first instance of biological saccharification with exclusive production and accumulation of glucose from lignocellulosic biomass. The key to its success was the use of C. thermocellum supplemented with a thermostable beta-glucosidase and cultured under a high cellulose load. We named this approach biological simultaneous enzyme production and saccharification (BSES). BSES may resolve a significant barrier to economical production by providing a platform for production of fermentable sugars with reduced enzyme amounts.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号