首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus thuringiensis is a Gram positive bacterium that is used for the production of biopesticides. The toxic action of different strains and serovars ofB. thuringiensis can be extremely selective towards specific pests, or, in contrast, it can affect a wide variety of non-target organisms such as insects, vertebrates or humans. A reliable characterization of the cultivated strains is of primary importance for the biopesticide industry, in order to assess the contamination of the final product with strains with different pesticide actions or that might be dangerous for human health. The aim of this study was to develop useful methods for the typing of differentB. thuringiensis strains using two PCR-based methods, RAPD and Rep-PCR with BOXA1R and ERIC2 primers. The molecular fingerprints obtained using ERIC2-PCR showed a reliable ability to discriminateBacillus thuringiensis strains.  相似文献   

2.
Bacillus thuringiensis is an entomopathogenic bacterium that has been used as an efficient biopesticide worldwide. Despite the fact that this bacterium is usually described as an insect pathogen, its life cycle in the environment is still largely unknown. B. thuringiensis belongs to the Bacillus cereus group of bacteria, which has been associated with many mobile genetic elements, such as species-specific temperate or virulent bacteriophages (phages). Temperate (lysogenic) phages are able to establish a long-term relationship with their host, providing, in some cases, novel ecological traits to the bacterial lysogens. Therefore, this work focuses on evaluating the potential influence of temperate tectiviruses GIL01 and GIL16 on the development of different life traits of B. thuringiensis. For this purpose, a B. thuringiensis serovar israelensis plasmid-cured (nonlysogenic) strain was used to establish bacterial lysogens for phages GIL01 and GIL16, and, subsequently, the following life traits were compared among the strains: kinetics of growth, metabolic profiles, antibiotics susceptibility, biofilm formation, swarming motility, and sporulation. The results revealed that GIL01 and GIL16 lysogeny has a significant influence on the bacterial growth, sporulation rate, biofilm formation, and swarming motility of B. thuringiensis. No changes in metabolic profiles or antibiotic susceptibilities were detected. These findings provide evidence that tectiviruses have a putative role in the B. thuringiensis life cycle as adapters of life traits with ecological advantages.  相似文献   

3.
Bacterial antagonists used as biocontrol agents represent part of an integrated management program to reduce pesticides in the environment. Bacillus thuringiensis is considered a good alternative as a biocontrol agent for suppressing plant pathogens such as Fusarium. In this study, we used microscopy, flow cytometry, indirect immunofluorescence, and high performance liquid chromatography to determine the interaction between B. thuringiensis subsp. kurstaki LFB-FIOCRUZ (CCGB) 257 and F. verticillioides MRC 826, an important plant pathogen frequently associated with maize. B. thuringiensis showed a strong in vitro suppressive effect on F. verticillioides growth and inhibited fumonisin production. Flow cytometry analysis was found to be adequate for characterizing the fungal cell oscillations and death during these interactions. Further studies of the antagonistic effect of this isolate against other fungi and in vivo testing are necessary to determine the efficacy of B. thuringiensis subsp. kurstaki in controlling plant pathogens. This is the first report on the use of flow cytometry for quantifying living and apoptotic F. verticillioides cells and the B. thuringiensis Cry 1Ab toxin.  相似文献   

4.
TwoApium graveolens var.rapaceum (L.) cultivars that differ in their suitability for the survival and growth ofSpodoptera exigua (Hübner) andTrichoplusia ni (Hübner) were used to examine the effect of genetic and seasonal environmental variation in host plant suitability on the efficacy ofBacillus thuringiensis subsp.kurstaki (Berliner). The effects of host plant genotype andB. thuringiensis were generally independent, so thatB. thuringiensis efficacy was greatest on the resistant host plant cultivar. Host plant suitability varied within growing season for both insect species but, while host plant suitability decreased with increasing plant age forT. ni, the response ofS. exigua to plant age was not as clear. Within season variation in host plant suitability affectedB. thuringiensis efficacy and the interaction betweenB. thuringiensis and host plant cultivar forS. exigua but not forT. ni. Soluble protein and Folin-Denis phenolic concentrations of host plant tissue were not correlated with changes in host plant suitability to either insect species.  相似文献   

5.
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are members of the Bacillus cereus group of bacteria, demonstrating widely different phenotypes and pathological effects. B. anthracis causes the acute fatal disease anthrax and is a potential biological weapon due to its high toxicity. B. thuringiensis produces intracellular protein crystals toxic to a wide number of insect larvae and is the most commonly used biological pesticide worldwide. B. cereus is a probably ubiquitous soil bacterium and an opportunistic pathogen that is a common cause of food poisoning. In contrast to the differences in phenotypes, we show by multilocus enzyme electrophoresis and by sequence analysis of nine chromosomal genes that B. anthracis should be considered a lineage of B. cereus. This determination is not only a formal matter of taxonomy but may also have consequences with respect to virulence and the potential of horizontal gene transfer within the B. cereus group.  相似文献   

6.
Beta-exotoxin produced byBacillus thuringiensis var.thuringiensis grown in the acid hydrolysates of wheat and rice brans caused 95% and 85% mortality respectively ofMeloidogyne sp. as against 72% of β-exotoxin produced on farm yard manure within 7 days. Acid hydrolysate of wheat or rice bran and solid farm yard manure proved to be the best media for growth ofB. thuringiensis var.thuringiensis.  相似文献   

7.
《农业工程》2022,42(6):684-692
Bacteria are considered as foremost bioremediating agents among microorganisms, encompassing simple biological mechanism to tolerate higher concentration of heavy metal and favoring conservative strategies to substitute the usage of chemicals. Relating this implication, the present study is designed to identify, screen and characterize bacteria from industrial site soil to tolerate multimetals. Almost 108 colonies were obtained at various concentrations (0.5–2.0 mM) of heavy metals (cadmium, nickel and lead) and were thrived in the reformed minimal media. Bacterial isolates that grown in the higher concentration of heavy metals (2.0 mM) were taken for further studies. Among ten bacterial colonies, one isolate was selected for each heavy metal and further screened for their multi metal tolerance. Isolate, C20 alone survived in heavy metal mixture fortified medium with high recovery rate and increased colony forming units. Molecular level characterization and phylogenetic tree analysis revealed that the isolate is identical to Bacillus thuringiensis. The study highlights that the multi metal tolerant B. thuringiensis could be used as an effective bioremediating agent to manage heavy metals particularly cadmium, nickel and lead in industrial area. Further, attributed to be a plant growth promoting rhizobacteria, this organism can promote dual stratagems as a bio remediating agent and fertility enhancer in agricultural field due to its dual functions.  相似文献   

8.
Bacillus thuringiensis serovar israelensis is a wide-spread soil bacterium affiliated with the B. cereus group (Bcg) and is widely used in biocontrol products applied against mosquito and black fly larvae. For monitoring and quantification of applied B. thuringiensis serovar israelensis and its effect on indigenous B. thuringiensis serovar israelensis and Bcg assemblages, efficient and reliable tools are essential. The abundance and properties of B. thuringiensis serovar israelensis strains in the environment traditionally have been investigated with cultivation-dependent techniques, which are hampered by low sensitivity and the morphological similarity between B. cereus and B. thuringiensis. Currently available PCR-based detection and quantification tools target markers located on plasmids. In this study, a new cultivation-independent PCR-based method for efficient and specific quantification of B. thuringiensis serovar israelensis and Bcg is presented, utilizing two sets of PCR primers targeting the bacterial chromosome. Sequence database searches and empirical tests performed on target and nontarget species, as well as on bulk soil DNA samples, demonstrated that this diagnostic tool is specific for B. thuringiensis serovar israelensis and Bcg. The method will be useful for comparisons of Bcg and B. thuringiensis serovar israelensis abundances in the same samples. Moreover, the effect of B. thuringiensis serovar israelensis-based insecticide application on the total Bcg assemblages, including indigenous populations, can be investigated. This type of information is valuable in risk assessment and policy making for use of B. thuringiensis serovar israelensis in the environment.  相似文献   

9.
Cry2Aa, one of the major insecticidal proteins produced by Bacillus thuringiensis subsp. kurstaki HD1, is known to be active against both lepidopteran and dipteran larvae. In order to determine whether Cry2Aa could enhance or synergize the mosquitocidal activity of B. thuringiensis subsp. israelensis, we constructed a plasmid vector that harbored the cry2Aa operon and transformed crystalliferous and acrystalliferous strains of this bacterium. The wild-type B. thuringiensis subsp. israelensis, a recombinant B. thuringiensis subsp. israelensis producing Cry2A along with its native major mosquitocidal proteins, and a recombinant B. thuringiensis subsp. israelensis producing Cry2Aa alone were tested against three major mosquito species — Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Our results demonstrated that Cry2Aa does not synergize or enhance the mosquitocidal activity of B. thuringiensis subsp. israelensis against these important vectors of disease.  相似文献   

10.
The effectiveness of autochthonous plant growth-promoting rhizobacteria was studied in Lavandula dentata and Salvia officinalis growing in a natural arid Mediterranean soil under drought conditions. These bacteria identified as Bacillus megaterium (Bm), Enterobacter sp. (E), Bacillus thuringiensis (Bt), and Bacillus sp. (Bsp). Each bacteria has different potential to meliorate water limitation and alleviating drought stress in these two plant species. B. thuringiensis promoted growth and drought avoidance in Lavandula by increasing K content, by depressing stomatal conductance, and it controlled shoot proline accumulation. This bacterial effect on increasing drought tolerance was related to the decrease of glutathione reductase (GR) and ascorbate peroxidase (APX) that resulted sensitive indexes of lower cellular oxidative damage involved in the adaptative drought response in B. thuringiensis-inoculated Lavandula plants. In contrast, in Salvia, having intrinsic lower shoot/root ratio, higher stomatal conductance and lower APX and GR activities than Lavandula, the bacterial effects on nutritional, physiological and antioxidant enzymatic systems were lower. The benefit of bacteria depended on intrinsic stress tolerance of plant involved. Lavadula demonstrated a greater benefit than Salvia to control drought stress when inoculated with B. thuringiensis. The bacterial drought tolerance assessed as survival, proline, and indolacetic acid production showed the potential of this bacteria to help plants to grow under drought conditions. B. thuringiensis may be used for Lavandula plant establishment in arid environments. Particular characteristic of the plant species as low shoot/root ratio and high stomatal conductance are important factors controlling the bacterial effectiveness improving nutritional, physiological, and metabolic plant activities.  相似文献   

11.
It is commonly known that bacteria may produce antibiotics to interfere with the normal biological functions of their competitors in order to gain competitive advantages. Here we report that Bacillus thuringiensis suppressed the quorum-sensing-dependent virulence of plant pathogen Erwinia carotovora through a new form of microbial antagonism, signal interference. E. carotovora produces and responds to acyl-homoserine lactone (AHL) quorum-sensing signals to regulate antibiotic production and expression of virulence genes, whereas B. thuringiensis strains possess AHL-lactonase, which is a potent AHL-degrading enzyme. B. thuringiensis did not seem to interfere with the normal growth of E. carotovora; rather, it abolished the accumulation of AHL signal when they were cocultured. In planta, B. thuringiensis significantly decreased the incidence of E. carotovora infection and symptom development of potato soft rot caused by the pathogen. The biocontrol efficiency is correlated with the ability of bacterial strains to produce AHL-lactonase. While all the seven AHL-lactonase-producing B. thuringiensis strains provided significant protection against E. carotovora infection, Bacillus fusiformis and Escherichia coli strains that do not process AHL-degradation enzyme showed little effect in biocontrol. Mutation of aiiA, the gene encoding AHL-lactonase in B. thuringiensis, resulted in a substantial decrease in biocontrol efficacy. These results suggest that signal interference mechanisms existing in natural ecosystems could be explored as a new version of antagonism for prevention of bacterial infections.  相似文献   

12.
The genomic diversity and relationship among 61Bacillus thuringiensis andBacillus cereus reference strains were investigated by electrophoretic analysis of esterase enzymes on native polyacrylamide gel. Polymorphism of the esterolytic bands revealed seven esterases, designed as Est A to Est G in order of decreasing anodal migration. Each esterase showed two to three mobility variants that assigned the analysed strains into 35 electrophoretic types (ETs). This high diversity allowed the identification of several serovar or strain-specific ETs. Cluster analysis of ETs showed three major groups in which the strains belonging to the serovartolworthi were the most distant. The ETs distribution showed thatB. thuringiensis andB. cereus are intermingled in the dendrogram with the resolution of some common serovars ofB. thuringiensis in tight phylogenetic lineages. These results indicate that the esterase enzyme electrophoresis, applied as a sole typing method for the closely related speciesB. thuringiensis andB. cereus is suitable to highlight the intraspecific genetic diversity.  相似文献   

13.
The bacterium Bacillus thuringiensis produces, at the vegetative stage of its growth, Vip3A proteins with activity against a broad spectrum of lepidopteran insects. The Egyptian cotton leaf worm (Spodoptera littoralis) is an important agricultural pest that is susceptible to the Vip3Aa16 protein of Bacillus thuringiensis kurstaki strain BUPM95. The midgut histopathology of Vip3Aa fed larvae showed vacuolization of the cytoplasm, brush border membrane destruction, vesicle formation in the apical region and cellular disintegration. Biotinylated Vip3Aa toxin bound proteins of 55- and 100-kDa on blots of S. littoralis brush border membrane preparations. These binding proteins differ in molecular size from those recognized by Cry1C, one of the very few Cry proteins active against the polyphagous S. littoralis. This result supports the use of Vip3Aa16 proteins as insecticidal agent, especially in case of Cry-resistance management.  相似文献   

14.
The Bacillus cereus group sensu lato includes six closely-related bacterial species: Bacillus cereus, Bacillus anthracis, Bacillus thuringiensis, Bacillus mycoides, Bacillus pseudomycoides and Bacillus weihenstephanensis. B. thuringiensis is distinguished from the other species mainly by the appearance of an inclusion body upon sporulation. B. weihenstephanensis is distinguished based on its psychrotolerance and the presence of specific signature sequences in the 16S rRNA gene and cspA genes. A total of seven housekeeping genes (glpF, gmK, ilvD, pta, purH, pycA and tpi) from different B. thuringiensis serovars and B. weihenstephanensis strains were amplified and their nucleotide sequences determined. A maximum likelihood phylogenetic tree was inferred from comparisons of the concatenated sequences. B. thuringiensis serovars navarrensis, bolivia and vazensis clustered not with the other B. thuringiensis serovars but rather with the B. weihenstephanensis strains, indicative of a common phylogeny. In addition, specific signature sequences and single nucleotide polymorphisms common to B. thuringiensis serovars navarrensis, bolivia and vazensis and the B. weihenstephanensis strains, and absent in the other B. thuringiensis serovars, were identified.  相似文献   

15.
Bacillus thuringiensis and Bacillus cereus belong to the B. cereus species group. The two species share substantial chromosomal similarity and differ mostly in their plasmid content. The phylogenetic relationship between these species remains a matter of debate. There is genetic exchange both within and between these species, and current evidence indicates that insects are a particularly suitable environment for the growth of and genetic exchange between these species. We investigated the conjugation efficiency of B. thuringiensis var. kurstaki KT0 (pHT73-EmR) as a donor and a B. thuringiensis and several B. cereus strains as recipients; we used one-recipient and two-recipient conjugal transfer systems in vitro (broth and filter) and in Bombyx mori larvae, and assessed multiplication following conjugation between Bacillus strains. The B. thuringiensis KT0 strain did not show preference for genetic exchange with the B. thuringiensis recipient strain over that with the B. cereus recipient strains. However, B. thuringiensis strains germinated and multiplied more efficiently than B. cereus strains in insect larvae and only B. thuringiensis maintained complete spore germination for at least 24 h in B. mori larvae. These findings show that there is no positive association between bacterial multiplication efficiency and conjugation ability in infected insects for the used strains.  相似文献   

16.
Sprays of commercial preparations of the bacterium Bacillus thuringiensis subsp. israelensis are widely used for the control of mosquito larvae. Despite an abundant literature on B. thuringiensis subsp. israelensis field efficiency on mosquito control, few studies have evaluated the fate of spores in the environment after treatments. In the present article, two complementary experiments were conducted to study the effect of different parameters on B. thuringiensis subsp. israelensis persistence and recycling, in field conditions and in the laboratory. First, we monitored B. thuringiensis subsp. israelensis persistence in the field in two contrasting regions in France: the Rhône-Alpes region, where mosquito breeding sites are temporary ponds under forest cover with large amounts of decaying leaf matter on the ground and the Mediterranean region characterized by open breeding sites such as brackish marshes. Viable B. thuringiensis subsp. israelensis spores can persist for months after a treatment, and their quantity is explained both by the vegetation type and by the number of local treatments. We found no evidence of B. thuringiensis subsp. israelensis recycling in the field. Then, we tested the effect of water level, substrate type, salinity and presence of mosquito larvae on the persistence/recycling of B. thuringiensis subsp. israelensis spores in controlled laboratory conditions (microcosms). We found no effect of change in water level or salinity on B. thuringiensis subsp. israelensis persistence over time (75 days). B. thuringiensis subsp. israelensis spores tended to persist longer in substrates containing organic matter compared to sand-only substrates. B. thuringiensis subsp. israelensis recycling only occurred in presence of mosquito larvae but was unrelated to the presence of organic matter.  相似文献   

17.
It was found by using spectrophotometric, spectrofluorometric, and high-pressure liquid chromatography that four subspecies of Bacillus thuringiensis produce coproporphyrin. The porphyrin isomer was identified as coproporphyrin I for B. thuringiensis subsp. kurstaki (HD1). The porphyrin was isolated both from spores and from a variety of spent growth media. The quantity of porphyrin released by each Bacillus subspecies differed. The rank order of porphyrin production follows: B. thuringiensis subsp. kurstaki HD1 > B. thuringiensis subsp. thuringiensis HD27 > B. thuringiensis subsp. thuringiensis HD41 > B. thuringiensis subsp. darmstadiensis HD199.  相似文献   

18.
Laboratory trials of Bacillus thuringiensis var. israelensis (serotype 14) and B. sphaericus strain 1593 against field-collected Aedes stimulans showed that susceptibility declined with increasing instar and decreasing temperature. Test results with B. sphaericus were more erratic than with B. thuringiensis, and the efficacy of the former declined more rapidly with decreasing temperature. B. thuringiensis was significantly more active than B. sphaericus under all treatment conditions. These results indicate that the effective use of this strain of B. sphaericus as a mosquito biological control agent may be limited to warm water situations against more susceptible species.  相似文献   

19.
A novel mosquitocidal bacterium, Bacillus thuringiensis subsp. jegathesan, and one of its toxins, Cry11B, in a recombinant B. thuringiensis strain were evaluated for cross-resistance with strains of the mosquito Culex quinquefasciatus that are resistant to single and multiple toxins of Bacillus thuringiensis subsp. israelensis. The levels of cross-resistance (resistance ratios [RR]) at concentrations which caused 95% mortality (LC95) between B. thuringiensis subsp. jegathesan and the different B. thuringiensis subsp. israelensis-resistant mosquito strains were low, ranging from 2.3 to 5.1. However, the levels of cross-resistance to Cry11B were much higher and were directly related to the complexity of the B. thuringiensis subsp. israelensis Cry toxin mixtures used to select the resistant mosquito strains. The LC95 RR obtained with the mosquito strains were as follows: 53.1 against Cq4D, which was resistant to Cry11A; 80.7 against Cq4AB, which was resistant to Cry4A plus Cry4B; and 347 against Cq4ABD, which was resistant to Cry4A plus Cry4B plus Cry11A. Combining Cyt1A with Cry11B at a 1:3 ratio had little effect on suppressing Cry11A resistance in Cq4D but resulted in synergism factors of 4.8 and 11.2 against strains Cq4AB and Cq4ABD, respectively; this procedure eliminated cross-resistance in the former mosquito strain and reduced it markedly in the latter strain. The high levels of activity of B. thuringiensis subsp. jegathesan and B. thuringiensis subsp. israelensis, both of which contain a complex mixture of Cry and Cyt proteins, against Cry4- and Cry11-resistant mosquitoes suggest that novel bacterial strains with multiple Cry and Cyt proteins may be useful in managing resistance to bacterial insecticides in mosquito populations.  相似文献   

20.
Field evaluations ofBacillus thuringiensis Berliner serotype 14 and the nematodeSteinernema feltiae Filipjev 1934 (=Neoaplectana carpocapsae) were conducted againstSimulium ocharaceum Walker and other simuliid vectors of onchocerciasis in Mexico.B. thuringiensis was highly toxic, causing up to 100 % larval mortality, but only for short distances downstream. Increased dosage did not enhance downstream carry ofB. thuringiensis. Highest rates of mortality were recorded against early instar larvae. Stream treatment withS. feltiae did not result in significant larval mortality because the infectivestage nematodes were either not ingested or were injured during ingestion by the larval mouthparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号