首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We constructed a non-scar triple-deleted mutant Pseudomonas aeruginosa to improve phenazine-1-carboxylic acid (PCA) yield and then optimized the culture conditions for PCA production. Using a non-scar deletion strategy, the 5′-untranslated region of the phz1 gene cluster and two genes, phzM and phzS, were knocked out of the P. aeruginosa strain M18 genome. The potential ability for high-yield PCA production in this triple-deleted mutant M18MSU1 was successfully realized by using statistical experimental designs. A 25–1 fractional factorial design was used to show that the three culture components of soybean meal, corn steep liquor and ethanol had the most significant effect on PCA production. Using a central composite design, the concentration of the three components was optimized. The maximum PCA production was predicted to be 4,725.1 mg/L. With the optimal medium containing soybean meal 74.25 g/L, corn steep liquor 13.01 g/L and ethanol 21.84 ml/L, a PCA production of 4,771.2 mg/L was obtained in the validation experiments, which was nearly twofold of that before optimization and tenfold of that in the wild-type strain. This non-scar triple-deleted mutant M18MSU1 may be a suitable strain for industrial production of this biologically synthesized fungicide due to its high PCA production, presumed safety, thermal adaptability and cost-effectiveness.  相似文献   

2.
Optimization of bacteriocin production by Lactobacillus plantarum LPCO10 was explored by an integral statistical approach. In a prospective series of experiments, glucose and NaCl concentrations in the culture medium, inoculum size, aeration of the culture, and growth temperature were statistically combined using an experimental 235-2 fractional factorial two-level design and tested for their influence on maximal bacteriocin production by L. plantarum LPCO10. After the values for the less-influential variables were fixed, NaCl concentration, inoculum size, and temperature were selected to study their optimal relationship for maximal bacteriocin production. This was achieved by a new experimental 323-1 fractional factorial three-level design which was subsequently used to build response surfaces and analyzed for both linear and quadratic effects. Results obtained indicated that the best conditions for bacteriocin production were shown with temperatures ranging from 22 to 27°C, salt concentration from 2.3 to 2.5%, and L. plantarum LPCO10 inoculum size ranging from 107.3 to 107.4 CFU/ml, fixing the initial glucose concentration at 2%, with no aeration of the culture. Under these optimal conditions, about 3.2 × 104 times more bacteriocin per liter of culture medium was obtained than that used to initially purify plantaricin S from L. plantarum LPCO10 to homogeneity. These results indicated the importance of this study in obtaining maximal production of bacteriocins from L. plantarum LPCO10 so that bacteriocins can be used as preservatives in canned foods.  相似文献   

3.
Diol synthase from Aspergillus nidulans was cloned and expressed in Escherichia coli. Recombinant E. coli cells expressing diol synthase from A. nidulans converted linoleic acid to a product that was identified as 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The recombinant cells and the purified enzyme showed the highest activity for linoleic acid among the fatty acids tested. The optimal reaction conditions for the production of 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid from linoleic acid using whole recombinant E. coli cells expressing diol synthase were pH 7.5, 35°C, 250 rpm, 5 g l?1 linoleic acid, 23 g l?1 cells, and 20% (v/v) dimethyl sulfoxide in a 250-ml baffled flask. Under these optimized conditions, whole recombinant cells expressing diol synthase produced 4.98 g l?1 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid for 150 min without detectable byproducts, with a conversion yield of 99% (w/w) and a productivity of 2.5 g l?1 h?1. This is the first report on the biotechnological production of dihydroxy fatty acid using whole recombinant cells expressing diol synthase.  相似文献   

4.
Crypthecodinium strains are ideal candidates for DHA production. In a previous study, light was found to be efficient in inducing total fatty acid accumulation in Crypthecodinium sp. SUN. In order to further analyze the light-inducing behavior of this microalga, experiments were conducted to elucidate the influence of different light intensities, light qualities, and illumination periods on DHA production. The results showed that an irradiance of 30 μmol photons m?2 s?1 was most suitable for DHA production. Compared to red light and blue light, green light was more efficient in elevating the total fatty acid content in the cells. It was also found that illumination at the first 24 h promoted cell growth, whereas it favored total fatty acid accumulation only during 48–96 h. This is the first systematic investigation of the influence of light on total fatty acid accumulation and DHA production in Crypthecodinium sp. SUN, providing a solid foundation for further research on DHA production.  相似文献   

5.
Fatty acids (FAs) are promising precursors of advanced biofuels. This study investigated conversion of acetic acid (HAc) to FAs by an engineered Escherichia coli strain. We combined established genetic engineering strategies including overexpression of acs and tesA genes, and knockout of fadE in E. coli BL21, resulting in the production of ~1 g/L FAs from acetic acid. The microbial conversion of HAc to FAs was achieved with ~20% of the theoretical yield. We cultured the engineered strain with HAc-rich liquid wastes, which yielded ~0.43 g/L FAs using waste streams from dilute acid hydrolysis of lignocellulosic biomass and ~0.17 g/L FAs using effluent from anaerobic-digested sewage sludge. 13C-isotopic experiments showed that the metabolism in our engineered strain had high carbon fluxes toward FAs synthesis and TCA cycle in a complex HAc medium. This proof-of-concept work demonstrates the possibility for coupling the waste treatment with the biosynthesis of advanced biofuel via genetically engineered microbial species.  相似文献   

6.
In the present study, 13 filamentous fungi were screened for their lipid production and an oleaginous fungus, Penicillium brevicompactum NRC 829, was found to be the highest lipid producer. Screening of various agro-industrial residues was performed and sunflower oil cake proved to be the best substrate for lipid production. A central composite design was employed to investigate the optimum concentrations of the most significant medium components required to improve the lipid production by P. brevicompactum. The results clearly revealed that the maximal lipid production of 8.014 ± 0.06 gL?1 (representing 57.6% lipid/dry biomass) was achieved by the fungus when grown for 6 days at 30 °C under static condition in a medium containing sunflower oil cake, NaNO3 and KCl at final concentrations of 8, 0.75 and 0.25 gL?1, respectively. Gas chromatography-mass spectrometry analysis of P. brevicompactum lipid indicated that linoleic acid (LA) (C18:2–6, 9) was the most abundant fatty acid, accounting for up to 62% of the total fatty acid profile, followed by palmitoleic acid (C16:1, 16%) and linolenic acid (C18:3, 8%). These results suggest that P. brevicompactum NRC 829 may have potential for commercial development for the production of LA by fermentation using cheap raw material.  相似文献   

7.
An efficient chemoenzymatic route was developed for synthesis of (S)-α-amino-4-fluorobenzeneacetic acid, a valuable chiral intermediate of Aprepitant, using immobilized penicillin amidase catalyzed kinetic resolution of racemic N-phenylacetyl-4-fluorophenylglycine. The optimum temperature, pH and agitation rate of the reaction were determined to be 40 °C, 9.5 and 300 rpm, respectively. Kinetic resolution of 80 g L−1 N-phenylacetyl-4-fluorophenylglycine by immobilized amidase 20 g L−1 resulted in 49.9% conversion and >99.9% e.e. within 3 h. The unreacted N-phenylacetyl-4-fluorophenylglycine can be easily racemized and then recycled as substrate. The production of (S)-α-amino-4-fluorobenzeneacetic acid was further amplified in 1 L reaction system, affording excellent conversion (49.9%) and enantioselectivity (99.9%). This chemoenzymatic approach was demonstrated to be promising for industrial production of (S)-α-amino-4-fluorobenzeneacetic acid.  相似文献   

8.
9.
Plackett–Burman design was used to efficiently select important media components influencing lactic acid production in a two step screening procedure. A total of 36 screening experiments were conducted for studying the effect of various media components such as carbon and nitrogen (simple and complex) sources, minerals/buffering agents and a specific inducer for the production of lactic acid by Lactobacillus plantarum NCIM 2084. The eleven ingredients chosen after the first screening experiments were further screened by a Plackett-Burman design consisting of 12 experiments. Liquefied starch, wheat bran extract, ammonium nitrate, manganese sulphate and sodium acetate were chosen as promising ingredients for further optimisation studies. The highest yield of 41.9?g/l of lactic acid was obtained at the end of 24 hours of fermentation which corresponded to 90% conversion, on the basis of sugar supplied.  相似文献   

10.
In this study, a novel halophilic cyanobacterium was isolated and identified as Euhalothece sp. KZN. This fast-growing strain had the ability to synthesise high yields (12 mg g?1) of C-phycocyanin (C-PC), a highly fluorescent blue light-harvesting pigment with numerous potential uses in the biotechnology and commercial sectors. This study elucidated the individual and interactive role of different nutrients in BG11 growth medium for enhancing C-PC production in Euhalothece sp. KZN. Nine components of BG11 medium were screened for their effects via fractional factorial design (FFD). The results revealed a significant influence of nutrients, viz. MgSO4, NaNO3 and minor nutrients (citric acid, EDTA-iron citrate, CaCl2 and Na2CO3) on C-PC yield. These three components were further explored for their optimum concentration for enhancing C-PC production using a central composite design. The optimum values for these essential nutrients were found to be as follows: 0.10 g L?1 of MgSO4, 1.67 g L?1 of NaNO3 and 10 mL L?1 of minor nutrients which resulted in a 280% increase in C-PC yield with predicted and actual values of 43.97 and 45 mg g?1, respectively. Euhalothece sp. KZN is a strong potential candidate for C-PC production and can be further exploited to produce this industrially valuable compound.  相似文献   

11.
Culture conditions (pH, time, temperature, inoculum size, orbital agitation speed and substrate concentration) for an extracellular collagenase produced by Candida albicans URM3622 were studied using three experimental designs (one 26−2 fractionary factorial and two 23 full factorial). The analysis of the 26−2 fractionary design data indicated that agitation speed and substrate concentration had the most significant effect on collagenase production. Based on these results, two successive 23 full factorial design experiments were run in which the effects of substrate concentration, orbital agitation speed and pH were further studied. These two sets of experiments showed that all variables chosen were significant for the enzyme production, with the maximum collagenolytic activity of 6.8 ± 0.4 U achieved at pH 7.0 with an orbital agitation speed of 160 rpm and 2% substrate concentration. Maximum collagenolytic activity was observed at pH 8.2 and 45 °C. The collagenase was stable within a pH range of 7.2–8.2 and over a temperature range of 28–45 °C. These results clearly indicate that C. albicans URM3622 is a potential resource for collagenase production and could be of interest for pharmaceutical, cosmetic and food industry.  相似文献   

12.
The 13C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden–Meyerhof–Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid–liquid separation of the KWSS, the addition of Fe3+ during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe3+ addition), the flux to the EMP with the addition of Fe3+ (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe3+ also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l−1, an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn2+ showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution.  相似文献   

13.
《Process Biochemistry》2007,42(10):1391-1397
Fermentation parameters for biomass and DHA production of Schizochytrium limacinum OUC88 in a fermenter (working volume 7 L) were optimized using Plackett–Burman and central composite rotatable design. Out of 10 factors studied by Plackett–Burman design, 4 influenced the biomass production significantly. Central composite rotatable design was used to optimize the significant factors and response surface plots were generated. Using these response surface plots and point prediction, optimized values of the factors were determined as follows temperature (°C) 23 °C, aeration rate 1.48 L min−1 L−1, agitation 250 rpm and inoculum cells in mid-exponential phase, the maximum yield of DCW and DHA were 24.1 and 4.7 g L−1, respectively. These predicted values were also verified by validation experiments.  相似文献   

14.
The batch fermentations were conducted using lactose as the substrate at pH 6.5 and temperature 30°C. Average batch kinetic data was eventually used to develop an unstructured mathematical model. The kinetic parameters of the model were determined by non-linear regression technique using the batch experimental results. Parametric sensitivity analysis showed the maximum specific substrate consumption rate (rSmax) and the maintenance energy constant (mS) to be the most sensitive parameters. The experimental observations in batch fermentation were close to the model predictions. The batch model was extrapolated to identify nutrient feeding strategies, which were tested successfully for two different fed-batch fermentations. It demonstrated enhanced propionic acid productivity. The developed model was found suitable for the design of feeding strategies to increase propionic acid production in fed-batch mode of reactor operation.  相似文献   

15.
Gymnema sylvestre is an important medicinal plant that bears bioactive compound namely gymnemic acid. In the present study, G. sylvestre was transformed by Agrobacterium rhizogenes. Seedling explants namely roots, stems, hypocotyls, cotyledonary nodal segments, cotyledons and young leaves were inoculated with A. rhizogenes strain KCTC 2703. Transformed (hairy) roots were induced from cotyledons and leaf explants. Six transgenic clones of hairy roots were established and confirmed by polymerase chain reaction (PCR) and RT-PCR using rolC specific primers. Hairy roots cultured using MS liquid medium supplemented with 3 % sucrose showed highest accumulation of biomass (97.63 g l?1 FM and 10.92 g l?1 DM) at 25 days, whereas highest accumulation of gymnemic acid content (11.30 mg g?1 DM) was observed at 20 days. Nearly 9.4-fold increment of biomass was evident in suspension cultures at 25 days of culture and hairy root biomass produced in suspension cultures possessed 4.7-fold higher gymnemic acid content when compared with the untransformed control roots. MS-based liquid medium was superior for the growth of hairy roots and production of gymnemic acid compared with other culture media evaluated (B5, NN and N6), with MS-based liquid medium supplemented with 3 % sucrose was optimal for secondary metabolite production. The current results showed great potentiality of hairy root cultures for the production of gymnemic acid.  相似文献   

16.
The effect of nitriloacetic acid (NTA) and 8-hydroxyquinoline on the production of citric acid by Aspergillus niger was investigated. The complexing agents showed an effect only during inoculation of the microorganism. Subsequent addition after inoculation did not produce any significant increase in citric acid yield. When 200 ppm of NTA was added during inoculation, an increase of 10.9 g·dm−3 citric acid over that produced by the control culture was observed. 8-Hydroxyquinoline, on the other hand, produced a higher concentration of citric acid which was 34 g·dm−3 over that of the control culture. The use of 8-hydroxyquinoline is therefore suggested for the production of citric acid from molasses using Aspergillus niger.  相似文献   

17.
High lipid content in microalgae is an essential parameter for adopting of microalgal biomass as a feedstock for biodiesel. Mutation is one approach to obtain desired algal strain with high lipid production. In this study, a mutant strain of Chlorella pyrenoidosa was isolated using 1.5?×?1015 ions cm?2 s?1 of N+ ion beam implantation technique, which has been widely used in mutagenesis of agricultural crops. N+ implantation slightly improved the growth of the mutant over the corresponding wild strain with significant increase in lipid content (32.4 % higher than the wild strain), which resulted in significant increase in lipid productivity by 35 %. In addition, ion implantation mutagenesis of C. pyrenoidosa resulted in 21.4 % decrease in total saturated fatty acids (SFAs) compared to the wild type, with a noticeable increase in polyunsaturated fatty acids (PUFAs). The increase in PUFAs was due mainly to stimulation of hexadecadienoic acid (C16:2) and octadecadienoic acid (C18:2) production. However, the SFA content of wild and mutant strains was 31.7 and 24.9 % of total fatty acids, respectively, highlighting the oxidative stability of biodiesel produced by both strains according to the European standards. Cultivation of C. pyrenoidosa mutant in selenite enrichment medium for five successive cultivation experiments showed insignificant changes in biomass productivity, lipid content, and lipid productivity alongside the study period, which confirms the genetic stability of the produced mutant. The present study confirmed the feasibility of generation of microalgae mutants with significant high lipid production using ion beam implantation.  相似文献   

18.

Key message

Acetic acid acts as a signal molecule, strongly enhancing xanthone biosynthesis in Hypericum perforatum root cultures. This activity is specific, as demonstrated by the comparison with other short-chain monocarboxylic acids.

Abstract

We have recently demonstrated that Hypericum perforatum root cultures constitutively produce xanthones at higher levels than the root of the plant and that they respond to chitosan (CHIT) elicitation with a noteworthy increase in xanthone production. In the present study, CHIT was administered to H. perforatum root cultures using three different elicitation protocols, and the increase in xanthone production was evaluated. The best results (550 % xanthone increase) were obtained by subjecting the roots to a single elicitation with 200 mg l?1 CHIT and maintaining the elicitor in the culture medium for 7 days. To discriminate the effect of CHIT from that of the solvent, control experiments were performed by administering AcOH alone at the same concentration used for CHIT solubilization. Unexpectedly, AcOH caused an increase in xanthone production comparable to that observed in response to CHIT. Feeding experiments with 13C-labeled AcOH demonstrated that this compound was not incorporated into the xanthone skeleton. Other short-chain monocarboxylic acids (i.e., propionic and butyric acid) have little or no effect on the production of xanthones. These results indicate that AcOH acts as a specific signal molecule, able to greatly enhance xanthone biosynthesis in H. perforatum root cultures.
  相似文献   

19.
This work describes an in vitro propagation protocol for the large-scale cultivation of Leptohyptis macrostachys (Benth.) Harley & JFB Pastore and the influence of abiotic factors on podophyllotoxin and yatein production. The plant was established from seeds collected in Chapada Diamantina, BA, Brazil and submitted to different growth mediums and physical conditions. The podophyllotoxin and yatein contents were quantified by HPLC/DAD and with pure standards and these two lignans were present in all experiments. The lignan quantities were evaluated using the Sisvar Program, compared by Tukey’s test and hierarchical cluster analysis and principal component analysis. In all experiments, podophyllotoxin and yatein were detected at different concentrations. The best protocol cultivar of L. macrostachys was established from seeds in MS ½ medium supplemented with 1.5% sucrose and 11.55 μM of gibberellic acid A3 (GA3) at 30 °C, which yielded the highest concentration of podophyllotoxin (5.831 mg g−1). These results are important findings for the production of podophyllotoxin from the tissue culture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号