首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In the present study, a high chitinase producing strain Pantoea dispersa was isolated from the sea dumps at Bhavnagar, India. Chitin, urea, CaCl2 and MgSO4 x 7H2O were variables used in central composite design for chitinase production. Chitinase, biomass and pH were the responses used in different models to evaluate individually fit ones. Quadratic model was found to be fit for chitinase response whereas in the case of biomass and pH, linear model was found to be fit without the effect of others. Chitinase production was optimized with respect to other responses such as biomass and pH in multiresponse analysis of response surface design by using desirability approach. In multiresponse analysis, following medium formulation (g/l), chitin, 15; urea, 0.32; CaCl2, 0.10 and MgSO4 x 7H2O, 0.08 was found to predict optimum chitinase production of 482.77 units/ml with overall highest desirability of 0.854 as compared to other formulations. The selection of model was done on the basis of high Adjusted R-squared value and lowered p-value for each model in individual analysis of each response. In multiresponse experiment, it was found that for response chitinase quadratic model and for responses pH and biomass linear models were well fit. Through desirability analysis, it was found that in the chitinase production, pH was essential as compared to biomass in P. dispersa. Endochitinase and chitobiase actvities were also studied.  相似文献   

2.
【目的】鉴定一株来源于中国南海海水样能够分泌多种胞外几丁质酶的类芽孢杆菌CAU904,并优化其产几丁质酶的发酵条件。【方法】采用形态学观察、16S r DNA序列比对及生理生化实验鉴定;通过碳源、氮源、温度、初始p H、表面活性剂种类以及发酵时间的单因素优化实验获得最佳发酵条件。【结果】菌株CAU904被鉴定为巴伦葛兹类芽孢杆菌(Paenibacillus barengoltzii),其最优发酵产酶条件为:0.5%胶体几丁质,0.2%酵母浸提物,0.1%吐温-80,培养基初始p H 7.0,45°C培养72 h。在最优发酵条件下,该菌株最大产酶水平达到8.2 U/m L,比优化前提高了5.4倍。几丁质酶的酶谱分析表明该菌株能够产生多达11种具有几丁质水解活性的同工酶,其中主要酶谱带对应分子量分别为54、47和38 k D。【结论】实验结果为巴伦葛兹类芽孢杆菌几丁质酶的分离纯化和酶的应用提供了基础。  相似文献   

3.
In the presence of chitin,Aeromonas sp. DYU-Too7 can produce extra-cellular, chitin-degrading enzymes. Chitin analogues and other carbon sources can be used to cultivate this bacterial strain. The chitinases produced by the strain were higher in the GIcN (glucosamine) medium than those in other media. The maximal chitinase activity occurred in the medium containing 0.1% GIcN. Cultivation ofAeromonas sp. DYU-Too7 in the GIcN medium sped up the chitinase production; however the same result did not appear when it was cultivated in the (Chitin+GIcN) medium. This result may indicate that GIcN can be utilized byAeromonas sp. DYU-Too7 as a carbon source and an inducer to produce chitinases. A chitinase with a molecular mass of 36 kDa was further purified and characterized to have an optimal reacting pH of 5.0 and an optimal reacting temperature of 50°C. This chitinase showed high stability in the proximity of 30°C and also high stability in the proximity of pH 7.0. The hydrolysates of colloidal chitin, with the aid of the 36-kDa chitinase, were analyzed by an HPLC and found to be chitobiose.  相似文献   

4.
Aims:  Statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1.
Methods and Results:  Urea, K2HPO4, chitin and yeast extract were identified as significant components influencing chitinase production by Paenibacillus sp. D1 using Plackett–Burman method. Response surface methodology (central composite design) was applied for further optimization. The concentrations of medium components for improved chitinase production were as follows (g l−1): urea, 0·33; K2HPO4, 1·17; MgSO4, 0·3; yeast extract, 0·65 and chitin, 3·75. This statistical optimization approach led to the production of 93·2 ± 0·58 U ml−1 of chitinase.
Conclusions:  The important factors controlling the production of chitinase by Paenibacillus sp. D1 were identified as urea, K2HPO4, chitin and yeast extract. Statistical approach was found to be very effective in optimizing the medium components in manageable number of experimental runs with overall 2·56-fold increase in chitinase production.
Significance and Impact of the Study:  The present investigation provides a report on statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1. Paenibacillus species are gram-positive, spore-forming bacteria with several PGPR and biocontrol potentials. However, only few reports concerning mycolytic enzyme production especially chitinases are available. Chitinase produced by Paenibacillus sp. D1 represents new source for biotechnological and agricultural use.  相似文献   

5.
Chitinases are the enzymes which are capable of hydrolyzing chitin to its monomer N-acetyl glucosamine (GlcNac). Present study emphasizes on the impact of critical process variables on the production of chitinase from Streptomyces pratensis strain KLSL55. Initially the isolate was noticed to produce 84.67?IU chitinase in basal production medium. At optimization of bioprocess variables, the physical parameters pH of 8.00, 40?°C of incubation temperature, agitation speed of 160?rpm and 1.25?mL of spore suspension were found optimum for improved production of chitinase. Further, formulated production medium with 1.5% colloidal chitin, 1.25% fructose greatly influenced the chitinase production. At all described optimum conditions with formulated production media, a total of 14.30-fold increment was achieved in the chitinase production with final activity of 1210.67?IU when compared to the initial fermentation conditions in basal production medium.  相似文献   

6.
The concentrations of glucose and total reducing sugars obtained by chemical hydrolysis of three different lignocellulosic feedstocks were maximized. Two response surface methodologies were applied to model the amount of sugars produced: (1) classical quadratic least-squares fit (QLS), and (2) artificial neural networks based on radial basis functions (RBF). The results obtained by applying RBF were more reliable and better statistical parameters were obtained. Depending on the type of biomass, different results were obtained. Improvements in fit between 35% and 55% were obtained when comparing the coefficients of determination (R2) computed for both QLS and RBF methods. Coupling the obtained RBF models with particle swarm optimization to calculate the global desirability function, allowed to perform multiple response optimization. The predicted optimal conditions were confirmed by carrying out independent experiments.  相似文献   

7.
Summary Optimization of medium composition and pH for chitinase production by the Alcaligenes xylosoxydans mutant EMS33 was carried out in the present study and the optimized medium composition and conditions were evaluated in a fermenter. The medium components screened initially using Plackett–Burman design were (NH4)2SO4, MgSO4 7H2O, KH2PO4, yeast extract, Tween 20 and chitin in shake flask experiments. The significant medium components identified by the Plackett–Burman method were MgSO4 7H2O, Tween 20 and chitin. Central composite response surface methodology was applied to further optimize chitinase production. The optimized values of MgSO4 7H2O, Tween 20, chitin and pH were found to be 0.6 g/l, 0.05 g/l, 11.5 g/l and 8.0, respectively. Chitinase and biomass production of Alcaligenes xylosoxydans EMS33, was studied in a 2-l fermenter containing (g/l): chitin, 11.5; yeast extract, 0.5; (NH4)2SO4, 1; MgSO4 7H2O, 0.6; KH2PO4, 1.36 and Tween 20, 0.05. The highest chitinase production was 54 units/ml at 60 h and pH 8.0 when the dissolved O2 concentration was 60%, whereas the highest biomass production was achieved at 36 h and pH 7.5 without any dissolved O2 control.  相似文献   

8.
Aspergillus niger LOCK 62 produces an antifungal chitinase. Different sources of chitin in the medium were used to test the production of the chitinase. Chitinase production was most effective when colloidal chitin and shrimp shell were used as substrates. The optimum incubation period for chitinase production by Aspergillus niger LOCK 62 was 6?days. The chitinase was purified from the culture medium by fractionation with ammonium sulfate and affinity chromatography. The molecular mass of the purified enzyme was 43?kDa. The highest activity was obtained at 40?°C for both crude and purified enzymes. The crude chitinase activity was stable during 180?min incubation at 40?°C, but purified chitinase lost about 25?% of its activity under these conditions. Optimal pH for chitinase activity was pH 6–6.5. The activity of crude and purified enzyme was stabilized by Mg2+ and Ca2+ ions, but inhibited by Hg2+ and Pb2+ ions. Chitinase isolated from Aspergillus niger LOCK 62 inhibited the growth of the fungal phytopathogens: Fusarium culmorum, Fusarium solani and Rhizoctonia solani. The growth of Botrytis cinerea, Alternaria alternata, and Fusarium oxysporum was not affected.  相似文献   

9.
Medium development for chitinase production by Trichoderma virens was first carried out using conventional method of one-factor-at-a-time. The medium was further optimized using Central Composite Design in which response surface was generated later from the derived model. An experimental design of four variables including various initial pH values, chitin, ammonium sulphate, and methanol concentrations were created using Design Expert® Software, Version 6.0. The design consists of 30 experiments, which include 6 replicates at center points. The optimal value for each variable are 3.0 g/L, chitin; 0.1 g/L, ammonium sulphate; 0.4% (v/v), methanol; and initial pH, 4.0 with predicted chitinase activity of 0.1495 U/mL. These predicted parameters were tested in the laboratory and the final chitinase activity obtained was 0.1471 U/mL, which is almost reaching the predicted value. The optimal medium design showed an improvement of chitinase activity of 80.9% compared to activity obtained from the original Absidia medium composition.  相似文献   

10.
Wang ZW  Liu XL 《Bioresource technology》2008,99(17):8245-8251
Statistics based experimental designs were used to optimize the medium for antifungal active substances production from a newly isolated Paenibacillus polymyxa Cp-S316 in shaker flask cultivation. The medium components having significant effect on the production were first identified using a fractional factorial design. Then steepest ascent method was employed to approach the experimental design space, followed by an application of response surface methodology for further optimization. A quadratic model was found to fit the antifungal active substances production. Response surface analysis revealed that the optimum values of the tested variables for the production of active substances were 12.3 (g/l) lactose, 17.5 (g/l) peptone, 0.4 (g/l) sodium nitrate, 4.5 (g/l) magnesium sulfate and 100 (g/l) potato. A production of 4687.71mug/ml, which was in agreement with the prediction, was observed in verification experiment. In comparison to the production of basal medium, 3.05-fold increase had been obtained.  相似文献   

11.
《Process Biochemistry》1999,34(3):257-267
A chitinolytic fungus, Beauveria bassiana was isolated from marine sediment and significant process parameters influencing chitinase production in solid state fermentation using wheat bran were optimised. The organism was strongly alkalophilic and produced maximum chitinase at pH 9·20. The NaCl and colloidal chitin requirements varied with the type of moistening medium used. Vegetative (mycelial) inoculum was more suitable than conidial inoculum for obtaining maximal enzyme yield. The addition of phosphate and yeast extract resulted in enhancement of chitinase yield. After optimisation, the maximum enzyme yield was 246·6 units g−1 initial dry substrate (U gIDS−1). This is the first report of the production of chitinase from a marine fungus.  相似文献   

12.
Fermentation optimisation to achieve high biomass and high efficiency of a biocontrol product is millstone in biocontrol sciences. Here, a Placket–Burman design used for comparison and screening of some environmental factors that are effective on bacterial biomass of Bacillus subtilis UTB96. A response surface methodology used to determine the optimal points for three factors including pH, temperature and C/N ratio where the biomass is high. The results of response surface methodology application showed that the optimum conditions for maximum production of biomass in the medium occurs at pH 7, temperature 30?°C and C/N ratio of 23:1. Bacteria derived from optimised conditions either from laboratory or semi-industrial bioreactors, showed a considerable increase in biomass and also, their antagonistic activity against Phytophthora drechsleri in a plate assay. However, optimisation of culture medium in a laboratory bioreactor decreased the antagonistic activity against Aspergillus flavus. Application of the optimised culture medium in both semi-industrial and laboratory bioreactors reduced the length of the lag phase of bacterial growth.  相似文献   

13.
The optimisation of submerged culture conditions and nutritional requirements was studied for the production of exopolysaccharide (EPS) fromPleurotus nebrodensis. The optimal temperature and initial pH for both mycelial growth and EPS production in shake flask cultures were 25 °C and 8.0, respectively. Maltose was found the most suitable carbon source for both mycelial biomass and EPS production. Yeast extract was favourable nitrogen source for both mycelial biomass and EPS production. Optimum concentration of each medium component was determined using the orthogonal matrix method. The optimal combination of the media constituents for mycelial growth and EPS production was as follows: 200 g l?1 bran, 25 g l?1 maltose, 3 g l?1 yeast extract, 1 g l?1 KH2PO4, 1 g l?1 MgSO4 7H2O. Under the optimal conditions, the mycelial biomass (4.13 g l?1) and EPS content (2.40 g l?1) ofPleurotus nebrodensis was 2.3 and 3.6 times compared to the control with basal medium respectively.  相似文献   

14.
The purpose of this article is to use statistical Plackett–Burman and Box–Wilson response surface methodology to optimize the medium components and, thus, improve chitinase production by Streptomyces griseorubens C9. This strain was previously isolated and identified from a semi-arid soil of Laghouat region (Algeria). First, syrup of date, colloidal chitin, yeast extract and K2HPO4, KH2PO4 were proved to have significant effects on chitinase activity using the Plackett–Burman design. Then, an optimal medium was obtained by a Box–Wilson factorial design of response surface methodology in liquid culture. Maximum chitinase production was predicted in medium containing 2% colloidal chitin, 0.47% syrup of date, 0.25 g/l yeast extract and 1.81 g/l K2HPO4, KH2PO4 using response surface plots of the STATISTICA software v.12.0.  相似文献   

15.
Actinomycetes were screened from soil in the centre of Poland on chitin medium. Amongst 30 isolated strains one with high activity of chitinase was selected. It was identified as Streptomyces sporovirgulis. Chitinase activity was detected from the second day of cultivation, then increased gradually and reached maximum after 4 days. The maximum chitinase production was observed at pH 8.0 and 25–30°C in the medium with sodium caseinate and asparagine as carbon and nitrogen sources and with shrimp shell waste as inducer of enzyme. Chitinase of S. sporovirgulis was purified from a culture medium by fractionation with ammonium sulphate as well as by chitin affinity chromatography. The molecular weight of the enzyme was 27 kDa. The optimum temperature and pH for the chitinase were 40°C and pH 8.0. The enzyme activity was characterised by high stability at the temperatures between 35 and 40°C after 240 min of preincubation. The activity of the enzyme was strongly inhibited in the presence of Pb2+, Hg2+ and stabilized by the ions Mg2+. Purified chitinase from S. sporovirgulis inhibited growth of fungal phytopathogen Alternaria alternata. Additionally, the crude chitinase inhibited the growth of potential phytopathogens such as Penicillium purpurogenum and Penillium sp.  相似文献   

16.
In this study, shrimp shell powder, prepared by treating shrimp-processing waste by boiling and crushing, was used as a substrate for isolation of chitinase-producing microorganism. These organisms may have an important economic role in the biological control of rice and other fungal pathogens. Two hundred strains of bacteria with the ability to degrade chitin from shrimp shell waste were isolated from paddy soil, and of these, 40 strains showed chitinase activity in a solid state cultivation. One of the most potent isolates (strain R 176) was identified as Bacillus thuringiensis. Identification was carried out using morphological and biochemical properties along with 16S rRNA sequence analysis. This strain was able to produce high levels of extracellular chitinase in solid media containing shrimp shells as sole carbon source [1.36 U/g initial dry substrate (IDS)], which was 0.36-fold higher than the productivity in a liquid culture with colloidal chitin. The effects of medium composition and physical parameters on chitinase production by this organism were studied. The optimal medium contained shrimp shell mixed with rice straw in 1:1 ratio added with ball-milled chitin 0.5 % (w/v) and ammonium sulfate 0.5 % (w/v). The highest enzyme production (3.86 U/g IDS) by B. thuringiensis R 176 was obtained at pH 7, 37 °C after 14 days growth. With respect to the high amount of chitinase production by this strain in a simple medium, this strain could be a suitable candidate for the production of chitinase from chitinous solid substrates, and further investigations into its structure and characteristics are merited.  相似文献   

17.
This work investigated the optimisation of the fermented culture medium for maximisation of rhamnolipids production produced byPseudomonas aeruginosa 181 using Response Surface Modeling (RSM). A two full factorial central composite experimental design was used in the design of experiments and in the analysis of results. This procedure limited the number of actual experiments performed while allowing for possible interactions between the parameters (pH, stirring rate, casamino acid concentration and incubation period) on the production of biosurfactants. Production carried out at larger volumes of one litre using Bioreactor under RSM-optimised conditions yielded 3.61 g l?1 of products after purification by acid precipitation.  相似文献   

18.
Chitinase is one of the important mycolytic enzymes with industrial significance, and is produced by a number of organisms, including bacteria. In this study, we describe isolation, characterization and media optimization for chitinase production from a newly isolated thermotolerant bacterial strain, BISR-047, isolated from desert soil and later identified as Paenibacillus sp. The production of extracellularly secreted chitinase by this strain was optimized by varying pH, temperature, incubation period, substrate concentrations, carbon and nitrogen source,etc. The maximum chitinase production was achieved at 45 °C with media containing (in g/l) chitin 2.0, yeast extract 1.5, glycerol 1.0, and ammonium sulphate 0.2 % (media pH 7.0). A three-fold increase in the chitinase production (712 IU/ml) was found at the optimized media conditions at 6 days of incubation. The enzyme showed activity at broad pH (3–10) and temperature (35–100 °C) ranges, with optimal activity displayed at pH 5.0 and 55 °C, respectively. The produced enzyme was found to be highly thermostable at higher temperatures, with a half-life of 4 h at 100 °C.  相似文献   

19.
Previously, we isolated a strain of Bacillus that had antifungal activity and produced lytic enzymes with fungicidal potential. In the present study, we identified the bacterium as Paenibacillus ehimensis and further explored its antifungal properties. In liquid co-cultivation assays, P. ehimensis IB-X-b decreased biomass production of several pathogenic fungi by 45%-75%. The inhibition was accompanied by degradation of fungal cell walls and alterations in hyphal morphology. Residual medium from cultures of P. ehimensis IB-X-b inhibited fungal growth, indicating the inhibitors were secreted into the medium. Of the 2 major lytic enzymes, chitinases were only induced by chitin-containing substrates, whereas beta-1,3-glucanase showed steady levels in all carbon sources. Both purified chitinase and beta-1,3-glucanase degraded cell walls of macerated fungal mycelia, whereas only the latter also degraded cell walls of intact mycelia. The results indicate synergism between the antifungal action mechanisms of these enzymes in which beta-1,3-glucanase is the initiator of the cell wall hydrolysis, whereas the degradation process is reinforced by chitinases. Paenibacillus ehimensis IB-X-b has pronounced antifungal activity with a wide range of fungi and has potential as a biological control agent against plant pathogenic fungi.  相似文献   

20.
Bifidobacterium pseudocatenulatum G4, a wild strain isolated from infant stools that has previously exhibited probiotic characteristics, was used in this study. The aim of this research was to improve the growth potential of this strain in milk-based medium. An initial screening study using a 23 full factorial design was carried out to identify the impact on biomass production of the various components of the medium which were skim milk, yeast extract, and glucose. Statistical analysis suggested that yeast extract had a significant positive effect on viable cell count whereas glucose had a negative effect. Response surface methodology (RSM) was then applied to optimize the use of skim milk and yeast extract. A quadratic model was derived using a 32 face-centered central composite design to represent cell mass as a function of the two variables. The optimized medium composition was found to be 2.8% skim milk and 2.2% yeast extract, w/v. The optimized medium allowed a maximum biomass of 9.129 log10 cfu/mL, 3.329 log units higher than that achieved with 10% skim milk, which is the amount commonly used. The application of RSM resulted in an improvement in the biomass production of this strain in a more cost-effective milk medium, in which skim milk use was reduced by 71.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号