首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sustained stimulation of G-protein coupled receptors (GPCRs) typically causes receptor desensitisation that is mediated by phosphorylation, often within the C-terminal tail of the receptor. The consequent binding of beta-arrestin not only prevents the receptor from activating its G-protein (causing desensitisation) but can also target it for internalisation via clathrin-coated vesicles and can mediate signalling to proteins regulating endocytosis and mitogen-activated protein kinase (MAPK) cascades. GnRH acts via phospholipase C coupled GPCRs on pituitary gonadotrophs. The type I GnRH-receptors (GnRH-Rs) found only in mammals, are unique in that they lack C-terminal tails and apparently do not undergo agonist-induced phosphorylation or bind beta-arrestin. They are therefore resistant to receptor desensitisation and internalise slowly. In contrast, the type II GnRH-Rs, found in numerous vertebrates, possess such tails and show rapid desensitisation and internalisation with concomitant receptor phosphorylation (within the C-terminal tails) and/or binding of beta-arrestin. The binding to beta-arrestin may also be important for association with dynamin, a GTPase that controls cleavage of endosomes from the plasma membrane. Using recombinant adenovirus to express GnRH-R, we have found that blockade of dynamin-dependent endocytosis inhibits internalisation of type II (Xenopus) GnRH-Rs but not type I (human) GnRH-Rs, revealing the existence of functionally distinct routes through which these receptors are internalised. Although type I GnRH-R do not rapidly desensitise, sustained activation of GnRH receptors does cause desensitisation of gonadotrophin secretion, an effect which must therefore involve adaptive responses distal to the receptor. One such response is the GnRH-induced down regulation of inositol 1, 4, 5 trisphosphate receptors that apparently underlies desensitisation of Ca2+ mobilisation in a gonadotroph-derived cell line. Although activation of other GPCRs can down-regulate inositol 1, 4, 5 trisphosphate receptors, the effect of GnRH is atypically rapid and pronounced, presumably because of the receptor's atypical resistance to desensitisation. GnRH-Rs are also expressed in several extra-pituitary sites and these may mediate direct inhibition of proliferation of hormone-dependent cancer cells. Infection with type I GnRH-R expressing adenovirus facilitated expression of high affinity, PLC-coupled GnRH-R in mammary and prostate cancer cells and these mediated pronounced antiproliferative effects of receptor agonists. No such effect was seen in cells transfected with a type II GnRH-R, implying that it is mediated most efficiently by a non-desensitising receptor. Thus it appears that the GnRH-Rs have undergone a period of rapidly accelerated molecular evolution that is of functional relevance to GnRH-R signalling in pituitary and extra-pituitary sites.  相似文献   

2.
The P2X(7) receptor is a ligand-gated cation channel that is highly expressed on mononuclear leukocytes and that mediates ATP-induced apoptosis and killing of intracellular pathogens. There is a wide variation in P2X(7) receptor function between subjects, explained in part by four loss-of-function polymorphisms (R307Q, E496A, I568N, and a 5'-intronic splice site polymorphism), as well as rare mutations. In this study, we report the allele frequencies of 11 non-synonymous P2X(7) polymorphisms and describe a fifth loss-of-function polymorphism in the gene (1096C --> G), which changes Thr(357) to Ser (T357S) with an allele frequency of 0.08 in the Caucasian population. P2X(7) function was measured by ATP-induced ethidium(+) influx into peripheral blood lymphocytes and monocytes and, when compared with wild-type subjects, was reduced to 10-65% in heterozygotes, 1-18% in homozygotes, and 0-10% in compound heterozygotes carrying T357S and a second loss-of-function polymorphism. Overexpression of the T357S mutant P2X(7) in either HEK-293 cells or Xenopus oocytes gave P2X(7) function of approximately 50% that of wild-type constructs. Differentiation of monocytes to macrophages, which also up-regulates P2X(7), restored P2X(7) function to near normal in cells heterozygous for T357S and to a value 50-65% of wild-type in cells homozygous for T357S or compound heterozygous for T357S/E496A. However, macrophages from subjects that are compound heterozygous for either T357S/R307Q or T357S/stop codon had near-to-absent P2X(7) function. These functional deficits induced by T357S were paralleled by impaired ATP-induced apoptosis and mycobacteria killing in macrophages from these subjects. Lymphocytes, monocytes, and macrophages from subjects homozygous for T357S or compound heterozygous for T357S and a second loss-of-function allele have reduced or absent P2X(7) receptor function.  相似文献   

3.
Reiner C  Nathanson NM 《Life sciences》2008,82(13-14):718-727
Multiple mechanisms exist for the endocytosis of receptors from the cell surface. While the M1, M3, and M4 subtypes of muscarinic acetylcholine receptor and M4 receptors transduce their signals through the same second messengers but internalize though different pathways, we tested the ability of several small G-proteins to regulate the agonist-induced endocytosis of M2 and M4 in JEG-3 human choriocarcinoma cells. Dominant-negative Rab5 as well as both wild-type and dominant-negative Rab11 inhibited M4 but not M2 endocytosis. In contrast, a dominant-negative Arf6 as well as wild-type Rab22 increased M2 but not M4 endocytosis. We used immunocytochemistry to show that in unstimulated cells, the M2 and M4 receptors co-localize on the cell surface, whereas after stimulation M2 and M4 are in distinct vesicular compartments. In this study, we demonstrate that agonist-induced internalization of the M2 receptor utilizes an Arf6, Rab22 dependent pathway, while the M4 receptor undergoes agonist-induced internalization through a Rab5, Rab11 dependent pathway. Additionally, we show that Rab15 and RhoA are not involved in either pathway in JEG-3 cells.  相似文献   

4.
Agonist-induced phosphorylation, internalization, and intracellular trafficking of G protein-coupled receptors are critical in regulating both cellular responsiveness and signal transduction. The current study investigated the role of receptor phosphorylation state in regulation of agonist-induced internalization and intracellular trafficking of mu-opioid receptor (MOR). Our results showed that after agonist stimulation, the recycle of a mutant MOR that lacks the C-terminal residues after Asn(362) (MOR362T) was greatly decreased, whereas a C-terminal phosphorylation sites-mutated MOR (MOR3A), which is deficient in agonist-induced phosphorylation recycled back to the membrane at a level comparable to that of the wild-type receptor, however, interestingly at a slower rate. Inhibition of functions of either Rab4 or Rab11 by dominant-negative mutants and small interfering RNA both significantly impaired the recycling of the wild-type MOR, whereas the recycling of the phosphorylation-deficient mutant was only inhibited by the dominant-negative mutant and small interfering RNA of Rab11, suggesting that the recycling of nonphosphorylated MOR is exclusively via Rab11-mediated pathway. Furthermore, phosphorylated MOR was observed accumulated in Rab5- and Rab4-, but not Rab11-positive vesicles. Our data indicate that both phosphorylated and nonphosphorylated MOR internalize via Rab5-dependent pathway after agonist stimulation, and the phosphorylated and nonphosphorylated MORs recycle through distinct vesicular trafficking pathways mediated by Rab4 and Rab11, respectively, which may ultimately lead to differential cellular responsiveness or downstream signaling.  相似文献   

5.
Understanding the molecular mechanisms of agonist-induced trafficking of G-protein-coupled receptors is important because of the essential role of trafficking in signal transduction. We examined the role of the GTPases dynamin 1 and Rab5a in substance P (SP)-induced trafficking and signaling of the neurokinin 1 receptor (NK1R), an important mediator of pain, depression, and inflammation, by studying transfected cells and enteric neurons that naturally express the NK1R. In unstimulated cells, the NK1R colocalized with dynamin at the plasma membrane, and Rab5a was detected in endosomes. SP induced translocation of the receptor into endosomes containing Rab5a immediately beneath the plasma membrane and then in a perinuclear location. Expression of the dominant negative mutants dynamin 1 K44E and Rab5aS34N inhibited endocytosis of SP by 45 and 32%, respectively. Dynamin K44E caused membrane retention of the NK1R, whereas Rab5aS34N also impeded the translocation of the receptor from superficially located to perinuclear endosomes. Both dynamin K44E and Rab5aS34N strongly inhibited resensitization of SP-induced Ca(2+) mobilization by 60 and 85%, respectively, but had no effect on NK1R desensitization. Dynamin K44E but not Rab5aS34N markedly reduced SP-induced phosphorylation of extracellular signal regulated kinases 1 and 2. Thus, dynamin mediates the formation of endosomes containing the NK1R, and Rab5a mediates both endosomal formation and their translocation from a superficial to a perinuclear location. Dynamin and Rab5a-dependent trafficking is essential for NK1R resensitization but is not necessary for desensitization of signaling. Dynamin-dependent but not Rab5a-dependent trafficking is required for coupling of the NK1R to the mitogen-activated protein kinase cascade. These processes may regulate the nociceptive, depressive, and proinflammatory effects of SP.  相似文献   

6.
Early endosome antigen 1 (EEA1) is a 170-kDa polypeptide required for endosome fusion in mammalian cells. The COOH terminus of EEA1 contains a FYVE domain that interacts specifically with phosphatidylinositol 3-phosphate (PtdIns-3-P) and a Rab5 GTPase binding region adjacent to the FYVE domain. The dual interaction of EEA1 with both PtdIns-3-P and Rab5 has been hypothesized to provide the specificity required to target EEA1 to early endosomes. To test this hypothesis, we generated truncated (amino acids 1277--1411) and full-length EEA1 constructs containing point mutations in the COOH terminus that impair Rab5 but not PtdIns-3-P binding. These constructs localized to endosomes in intact cells as efficiently as their wild-type counterparts. Furthermore, overexpression of the truncated constructs, both wild-type and mutated, impaired the function of endogenous EEA1 resulting in the accumulation of small, untethered endosomes. These results suggest that association with Rab5 is not necessary for the initial binding and tethering functions of EEA1. A role for Rab5 binding was revealed, however, upon comparison of endosomes in cells expressing full-length wild-type or mutated EEA1. The mutant full-length EEA1 caused the accumulation of endosome clusters and suppressed the enlargement of endosomes caused by a persistently active form of Rab5 (Rab5Q79L). In contrast, expression of wild-type EEA1 with Rab5Q79L enhanced this enlargement. Thus, endosome tethering depends on the interaction of EEA1 with PtdIns-3-P, and its interaction with Rab5 appears to regulate subsequent fusion.  相似文献   

7.
The human prostacyclin receptor (hIP) undergoes rapid agonist-induced internalization by largely unknown mechanism(s). Herein the involvement of Rab5 in regulating cicaprost-induced internalization of the hIP expressed in human embryonic kidney 293 cells was investigated. Over-expression of Rab5a significantly increased agonist-induced hIP internalization. Additionally, the hIP co-localized to Rab5a-containing endocytic vesicles in response to cicaprost stimulation and there was a coincident net translocation of Rab5 from the cytosol/soluble fraction of the cell. Co-immunoprecipitation studies confirmed a direct physical interaction between the hIP and Rab5a that was augmented by cicaprost. Whilst the dominant negative Rab5a(S34N) did not show decreased interaction with the hIP or fully impair internalization, it prevented hIP sorting to endocytic vesicles. Moreover, the GTPase deficient Rab5a(Q79L) significantly increased internalization and co-localized with the hIP in enlarged endocytic vesicles. While deletion of the carboxyl terminal (C)-tail domain of the hIP did not inhibit agonist-induced internalization, co-localization or co-immunoprecipitation with Rab5a per se, receptor trafficking was altered suggesting that it contains structural determinant(s) for hIP sorting post Rab5-mediated endocytosis. Taken together, data herein and in endothelial EA.hy 926 cells demonstrate a direct role for Rab5a in agonist-internalization and trafficking of the hIP and increases knowledge of the factors regulating prostacyclin signaling.  相似文献   

8.
Activation of the P2X7 receptor of macrophages plays an important role in inflammation. We recently reported that co-expression of P2X4 receptor with P2X7 receptor facilitates P2X7 receptor-mediated cell death via Ca(2+) influx. However, it remained unclear whether P2X4 receptor is involved in P2X7 receptor-mediated inflammatory responses, such as cytokine production. Here, we present evidence that P2X4 receptor modulates P2X7 receptor-dependent inflammatory functions. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced high mobility group box 1 (HMGB1) release and IL-1β production via activation of P2X7 receptor. Knockdown of P2X4 receptor or removal of extracellular Ca(2+) suppressed ATP-induced release of both HMGB1 and IL-1β. On the other hand, knockdown of P2X4 receptor or removal of extracellular Ca(2+) enhanced P2X7-dependent LC3-II expression (an index of autophagy), suggesting that P2X4 receptor suppresses P2X7-mediated autophagy. Since LC3-II expression was inhibited by pretreatment with antioxidant and NADPH oxidase inhibitor, we examined P2X7-mediated production of reactive oxygen species (ROS). We found that activation of P2X7 receptor-mediated production of ROS was significantly facilitated in P2X4-knockdown cells, suggesting that co-expression of P2X4 receptor with P2X7 receptor may suppress anti-inflammatory function-related autophagy via suppression of ROS production. We conclude that co-expression of P2X4 receptor with P2X7 receptor enhances P2X7-mediated inflammation through both facilitation of release of cytokines and suppression of autophagy.  相似文献   

9.
The small GTPase Rab5 controls the fusogenic properties of early endosomes through GTP-dependent recruitment and activation of effector proteins. Expression of a GTPase-defective mutant, Rab5(Q79L), is known to cause formation of enlarged early endosomes. The ability of Rab5-GTP to recruit multiple effectors raises the question whether the Rab5(Q79L)-induced giant endosomes simply represent enlarged early endosomes or whether they have a more complex phenotype. In this report, we have addressed this issue by generating a HEp2 cell line with inducible expression of Rab5(Q79L) and performing ultrastructural analysis of Rab5(Q79L)-induced endosomes. We find that Rab5(Q79L) not only induces formation of enlarged early endosomes but also causes enlargement of later endocytic profiles. Most strikingly, Rab5(Q79L) causes formation of enlarged multivesicular endosomes with a large number of intraluminal vesicles, and endosomes that contain both early and late endocytic markers are frequently observed. In addition, we observe defects in the sorting of the EGF receptor and the transferrin receptor through this compartment.  相似文献   

10.
The m4 subtype of muscarinic acetylcholine receptor regulates many physiological processes and is a novel therapeutic target for neurologic and psychiatric disorders. However, little is known about m4 regulation because of the lack of pharmacologically selective ligands. A crucial component of G protein-coupled receptor regulation is intracellular trafficking. We thus used subtype-specific antibodies and quantitative immunocytochemistry to characterize the intracellular trafficking of m4. We show that following carbachol stimulation, m4 co-localizes with transferrin, and the selective marker of early endosomes, EEA1. In addition, m4 intracellular localization depends on Rab5 activity. The dominant negative Rab5S34N inhibits m4 endocytosis initially following carbachol stimulation, and reduces the size of m4 containing vesicles. The constitutively active Rab5Q79L enhances m4 intracellular distribution, even in unstimulated cells. Rab5Q79L also produces strikingly enlarged vacuoles, which by electron microscopy contain internal vesicles, suggesting that they are multivesicular bodies. m4 localizes both to the perimeter and interior of these vacuoles. In contrast, transferrin localizes only to the vacuole perimeter, demonstrating divergence of m4 trafficking from the pathway followed by constitutively endocytosed transferrin. We thus suggest a novel model by which multivesicular bodies sort G protein-coupled receptors from a transferrin-positive recycling pathway to a nonrecycling, possibly degradative pathway.  相似文献   

11.
Histamine H2 receptor (H2R) is a member of G protein-coupled receptor family. Agonist stimulation of H2R results in several cellular events including activation of adenylate cyclase and phospholipase C, desensitization of the receptor, activation of extracellular signal-regulated kinases ERK1/2, and receptor endocytosis. In this study, we identified a GTPase dynamin as a binding partner of H2R. Dynamin could associate with H2R both in vitro and in vivo. Functional analyses using dominant-negative form of dynamin (K44E-dynamin) revealed that cAMP production and the following H2R desensitization are independent of dynamin. However, the agonist-induced H2R internalization was inhibited by co-expression of K44E-dynamin. Furthermore, activation of extracellular-signal regulated kinases ERK1/2 in response to dimaprit, an H2R agonist, was attenuated by K44E-dynamin. Although H2R with truncation of 51 amino acids at its carboxy-terminus did not internalize after agonist stimulation, it still activated ERK1/2, but the degree of this activation was less than that of the wild-type receptor. Finally, K44E dynamin did not affect ERK1/2 activation induced by internalization-deficient H2R. These results suggest that the agonist-induced H2R internalization and ERK1/2 activation are partially dynamin-dependent. Furthermore, ERK1/2 activation via H2R is likely dependent of the endocytotic process rather than dynamin itself.  相似文献   

12.
In human and rodent macrophages, activation of the P2X7 nucleotide receptor stimulates interleukin-1beta processing and release, apoptosis, and killing of intracellular Mycobacterium tuberculosis. Signaling pathways downstream of this ionotropic ATP receptor are poorly understood. Here we describe the rapid activation of the stress-activated protein kinase (SAPK)/JNK pathway in BAC1 murine macrophages stimulated by extracellular ATP. Brief exposure of the cells to ATP (10-30 min) was sufficient to trigger a rapid accumulation of activated SAPK that was then sustained for >120 min. Several observations indicated that the P2X7 receptor mediated this effect. 1) ATP and 3'-O-(4-benzoyl)benzoyl-ATP were the only agonistic nucleotides. 2) The effect was inhibited by oxidized ATP and the isoquinoline KN-62, two known P2X7 receptor antagonists. 3) ATP-induced SAPK activation could be recapitulated in P2X7 receptor-transfected HEK293 cells, but not in wild-type HEK293 cells. Because P2X7 receptor stimulation can rapidly activate caspase family proteases that have been implicated in the induction of the SAPK pathway, we investigated whether ATP-dependent SAPK activation involved such proteases. Brief exposure of BAC1 macrophages to extracellular ATP induced DNA fragmentation, alpha-fodrin breakdown, and elevated levels of caspase-3-type activity. Asp-Glu-Val-Asp-cho, a caspase-3 inhibitor, inhibited ATP-induced DNA fragmentation and alpha-fodrin proteolysis, but had no effect on ATP-induced SAPK activation. Tyr-Val-Ala-Asp-chloromethyl ketone, a caspase-1 inhibitor, prevented ATP-induced release of processed interleukin-1beta, but not ATP-dependent SAPK activity. We conclude that activation of ionotropic P2X7 nucleotide receptors triggers a strong activation of SAPK via a pathway independent of caspase-1- or caspase-3-like proteases.  相似文献   

13.
14.
The interaction of lipopolysaccharide-primed murine peritoneal macrophages with ivermectin, an antiparasite drug which potentiates P2X(4) receptors and dynasore which inhibits the GTPase activity of dynamin, a protein contributing to the internalization of plasma membrane proteins, was tested. Murine peritoneal macrophages express P2X(4) receptors which are mostly intracellular. In cells from P2X(7)-knockout mice (KO mice), 10 μm adenosine triphosphate (ATP) provoked a transient increase of the intracellular concentration of calcium. Ivermectin had no effect by itself but potentiated the increase of the intracellular concentration of calcium by ATP. The combination of ATP plus ivermectin also decreased the intracellular concentration of potassium and promoted the secretion of IL-1β. Concentrations of dynasore above 50?μm affected the integrity of mitochondria (MTT test) and of the plasma membrane (release of lactate dehydrogenase, LDH). At a 10 μm concentration, dynasore had no effect on the responses to ATP and on the internalization of P2X(4) receptors. By itself dynasore promoted the release of potassium and the secretion of IL-1β after activation of caspase-1. In conclusion, our results confirm that ivermectin potentiates the responses coupled to P2X(4) receptors probably by interaction with an allosteric site. We also show that this potentiation triggers the release of IL-1β by macrophages. As opposed to ivermectin, dynasore has no effect on P2X(4) receptors. This drug triggers a potassium efflux via a mechanism which does not involve purinergic receptors and generates, in consequence, the activation of caspase-1 and the secretion of IL-1β.  相似文献   

15.
Barden JA  Sluyter R  Gu BJ  Wiley JS 《FEBS letters》2003,538(1-3):159-162
P2X(7) receptor/channels mediate ATP-induced apoptosis in a range of cells including lymphocytes. HEK293 cells were transfected with wild-type human P2X(7) receptor or site-directed mutant constructs (K193A, K311A and E496A) known to be non-functional from measurements of barium/ethidium influx in the presence of ATP or 2',3'-O-(4-benzoylbenzoyl)-ATP. An antibody was designed against an epitope from a loop adjacent to the extracellular ATP site. The epitope was unavailable in cells expressing normal functional surface receptors. Non-functional surface receptors as well as intracellular receptors selectively bound the antibody. So did B-lymphocytes from chronic lymphocytic leukemia patients expressing non-functional (E496A) mutant receptor.  相似文献   

16.
Priming of monocytes with LPS produces large quantities of intracellular, biologically inactive IL-1beta that can be processed and released by subsequent activation of the P2X7 receptor by extracellular ATP. We examined whether a loss-of-function polymorphism of the human P2X7 receptor (Glu496Ala) impairs this process. Both ATP-induced ethidium+ uptake and ATP-induced shedding of L-selectin (CD62L) were nearly absent in monocytes from four subjects homozygous for Glu496Ala confirming that this polymorphism impairs P2X7 function. The level of ATP-induced IL-1beta released in 2 h from LPS-activated whole blood from homozygous subjects was 50% of that from wild-type samples. A more marked defect in IL-1beta release was observed from LPS-activated monocytes of homozygous subjects which was only 22% of that released from wild-type monocytes after a 30-min incubation with ATP. However, after a 60-min incubation with ATP, the amount of IL-1beta released from homozygous monocytes was 70% of that released from wild-type monocytes. Incubation of monocytes of either genotype with nigericin resulted in a similar release of IL-1beta. Western blotting demonstrated that ATP induced the release of mature 17-kDa IL-1beta from monocytes, and confirmed that this process was impaired in homozygous monocytes. Finally, ATP-induced 86Rb+ efflux was 9-fold lower from homozygous monocytes than from wild-type monocytes. The results indicate that ATP-induced release of IL-1beta is slower in monocytes from subjects homozygous for the Glu496Ala polymorphism in the P2X7 receptor and that this reduced rate of IL-1beta release is associated with a lower ATP-induced K+ efflux.  相似文献   

17.
The P2X(7) receptor is a ligand-gated channel that is highly expressed on mononuclear cells of the immune system and that mediates ATP-induced apoptosis. Wide variations in the function of the P2X receptor have been observed, explained in part by (7)loss-of-function polymorphisms that change Glu(496) to Ala (E496A) and Ile(568) to Asn (I568N). In this study, a third polymorphism, which substitutes an uncharged glutamine for the highly positively charged Arg(307) (R307Q), has been found in heterozygous dosage in 12 of 420 subjects studied. P2X(7) function was measured by ATP-induced fluxes of Rb(+), Ba(2+), and ethidium(+) into peripheral blood monocytes or various lymphocyte subsets and was either absent or markedly decreased. Transfection experiments showed that P2X(7) carrying the R307Q mutation lacked either channel or pore function despite robust protein synthesis and surface expression of the receptor. The monoclonal antibody (clone L4) that binds to the extracellular domain of wild type P2X(7) and blocks P2X(7) function failed to bind to the R307Q mutant receptor. Differentiation of monocytes to macrophages up-regulated P2X(7) function in cells heterozygous for the R307Q to a value 10-40% of that for wild type macrophages. However, macrophages from a subject who was double heterozygous for R307Q/I568N remained totally non-functional for P2X(7), and lymphocytes from the same subject also lacked ATP-stimulated phospholipase D activity. These data identify a third loss-of-function polymorphism affecting the human P2X(7) receptor, and since the affected Arg(307) is homologous to those amino acids essential for ATP binding to P2X(1) and P2X(2), it is likely that this polymorphism abolishes the binding of ATP to the extracellular domain of P2X(7).  相似文献   

18.
The binding of ATP to trimeric P2X receptors (P2XR) causes an enlargement of the receptor extracellular vestibule, leading to opening of the cation-selective transmembrane pore, but specific roles of vestibule amino acid residues in receptor activation have not been evaluated systematically. In this study, alanine or cysteine scanning mutagenesis of V47–V61 and F324–N338 sequences of rat P2X4R revealed that V49, Y54, Q55, F324, and G325 mutants were poorly responsive to ATP and trafficking was only affected by the V49 mutation. The Y54F and Y54W mutations, but not the Y54L mutation, rescued receptor function, suggesting that an aromatic residue is important at this position. Furthermore, the Y54A and Y54C receptor function was partially rescued by ivermectin, a positive allosteric modulator of P2X4R, suggesting a rightward shift in the potency of ATP to activate P2X4R. The Q55T, Q55N, Q55E, and Q55K mutations resulted in non-responsive receptors and only the Q55E mutant was ivermectin-sensitive. The F324L, F324Y, and F324W mutations also rescued receptor function partially or completely, ivermectin action on channel gating was preserved in all mutants, and changes in ATP responsiveness correlated with the hydrophobicity and side chain volume of the substituent. The G325P mutant had a normal response to ATP, suggesting that G325 is a flexible hinge. A topological analysis revealed that the G325 and F324 residues disrupt a β-sheet upon ATP binding. These results indicate multiple roles of the extracellular vestibule amino acid residues in the P2X4R function: the V49 residue is important for receptor trafficking to plasma membrane, the Y54 and Q55 residues play a critical role in channel gating and the F324 and G325 residues are critical for vestibule widening.  相似文献   

19.
Upon agonist stimulation, many G protein-coupled receptors such as beta(2)-adrenergic receptors are internalized via beta-arrestin- and clathrin-dependent mechanisms, whereas others, like M(2) muscarinic acetylcholine receptors (mAChRs), are internalized by clathrin- and arrestin-independent mechanisms. To gain further insight into the mechanisms that regulate M(2) mAChR endocytosis, we investigated the post-endocytic trafficking of M(2) mAChRs in HeLa cells and the role of the ADP-ribosylation factor 6 (Arf6) GTPase in regulating M(2) mAChR internalization. Here, we report that M(2) mAChRs are rapidly internalized by a clathrin-independent pathway that is inhibited up to 50% by expression of either GTPase-defective Arf6 Q67L or an upstream Arf6 activator, Galpha(q) Q209L. In contrast, M(2) mAChR internalization was not affected by expression of dominant-negative dynamin 2 K44A, which is a known inhibitor of clathrin-dependent endocytosis. Nevertheless, M(2) mAChRs, which are initially internalized in structures that lack clathrin-dependent endosomal markers, quickly localize to endosomes that contain the clathrin-dependent, early endosomal markers early endosome autoantigen-1, transferrin receptor, and GTPase-defective Rab5 Q79L, which is known to swell early endosomal compartments. These results suggest that M(2) mAChRs initially internalize via an Arf6-associated, clathrin-independent pathway but then quickly merge with the clathrin endocytic pathway at the level of early endosomes.  相似文献   

20.
Activated insulin receptors recruit various intracellular proteins leading to signal generation and endocytic trafficking. Although activated receptors are rapidly internalized into the endocytic compartment and subsequently degraded in lysosomes, the linkage between insulin receptor signaling and endocytosis is not well understood. This study utilizes both overexpression and depletion of Rab5 proteins to show that they play a critical role in both insulin-stimulated fluid phase and receptor-mediated endocytosis. Specifically, Rab5:WT and Rab5:Q79L (a GTP-hydrolysis defective mutant) enhance both types of endocytosis in response to insulin, while Rab5:S34N (a GTP-binding defective mutant) has the opposite effect. Morphological analysis indicates that both Rab5 and insulin receptor are found on early endosomes, but not at the plasma membrane. In addition, expression of Rab5:WT and Rab5:Q79L enhance both Erk1/2 and Akt activation without affecting JN- and p38-kinase activities, while the expression of Rab5:S34N blocks both Erk1/2 and Akt activation. Consistent with these observations, DNA synthesis is also altered by the expression of Rab5:S34N. Taken together, these results demonstrate that Rab5 is required for insulin receptor membrane trafficking and signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号