首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CLIP-170 and CLIP-115 are cytoplasmic linker proteins that associate specifically with the ends of growing microtubules and may act as anti-catastrophe factors. Here, we have isolated two CLIP-associated proteins (CLASPs), which are homologous to the Drosophila Orbit/Mast microtubule-associated protein. CLASPs bind CLIPs and microtubules, colocalize with the CLIPs at microtubule distal ends, and have microtubule-stabilizing effects in transfected cells. After serum induction, CLASPs relocalize to distal segments of microtubules at the leading edge of motile fibroblasts. We provide evidence that this asymmetric CLASP distribution is mediated by PI3-kinase and GSK-3 beta. Antibody injections suggest that CLASP2 is required for the orientation of stabilized microtubules toward the leading edge. We propose that CLASPs are involved in the local regulation of microtubule dynamics in response to positional cues.  相似文献   

2.
We address the relative roles of astral and central spindle microtubules (MTs) in cytokinesis of Drosophila melanogaster primary spermatocytes. Time-lapse imaging studies reveal that the central spindle is comprised of two MT populations, "interior" central spindle MTs found within the spindle envelope and "peripheral" astral MTs that probe the cytoplasm and initiate cleavage furrows where they contact the cortex and form overlapping bundles. The MT-associated protein Orbit/Mast/CLASP concentrates on interior rather than peripheral central spindle MTs. Interior MTs are preferentially affected in hypomorphic orbit mutants, and consequently the interior central spindle fails to form or is unstable. In contrast, peripheral MTs still probe the cortex and form regions of overlap that recruit the Pav-KLP motor and Aurora B kinase. orbit mutants have disorganized or incomplete anillin and actin rings, and although cleavage furrows initiate, they ultimately regress. Our work identifies a new function for Orbit/Mast/CLASP and identifies a novel MT population involved in cleavage furrow initiation.  相似文献   

3.
Lee H  Engel U  Rusch J  Scherrer S  Sheard K  Van Vactor D 《Neuron》2004,42(6):913-926
Axon guidance requires coordinated remodeling of actin and microtubule polymers. Using a genetic screen, we identified the microtubule-associated protein Orbit/MAST as a partner of the Abelson (Abl) tyrosine kinase. We find identical axon guidance phenotypes in orbit/MAST and Abl mutants at the midline, where the repellent Slit restricts axon crossing. Genetic interaction and epistasis assays indicate that Orbit/MAST mediates the action of Slit and its receptors, acting downstream of Abl. We find that Orbit/MAST protein localizes to Drosophila growth cones. Higher-resolution imaging of the Orbit/MAST ortholog CLASP in Xenopus growth cones suggests that this family of microtubule plus end tracking proteins identifies a subset of microtubules that probe the actin-rich peripheral growth cone domain, where guidance signals exert their initial influence on cytoskeletal organization. These and other data suggest a model where Abl acts as a central signaling node to coordinate actin and microtubule dynamics downstream of guidance receptors.  相似文献   

4.
Drosophila oocyte differentiation is preceded by the formation of a polarised 16-cell cyst from a single progenitor stem cell as a result of four rounds of asymmetric mitosis followed by incomplete cytokinesis. We show that the Orbit/Mast microtubule-associated protein is required at several stages in the formation of such polarised 16-cell cysts. In wild-type cysts, the Orbit/Mast protein not only associates with the mitotic spindle and its poles, but also with the central spindle (spindle remnant), ring canal and fusome, suggesting it participates in interactions between these structures. In orbit mutants, the stem cells and their associated fusomes are eventually lost as Orbit/Mast protein is depleted. The mitotic spindles of those cystocytes that do divide are either diminutive or monopolar, and do not make contact with the fusome. Moreover, the spindle remnants and ring canals fail to differentiate correctly in such cells and the structure of fusome is compromised. The Orbit/Mast protein thus appears to facilitate multiple interactions of the fusome with mitotic spindles and ring canals. This ensures correct growth of the fusome into a branched asymmetrically distributed organelle that is pre-determinative of 16-cell cyst formation and oocyte fate specification. Finally the Orbit/Mast protein is required during mid-oogenesis for the organisation of the polarised microtubule network inside the 16-cell cyst that ensures oocyte differentiation. The localisation of CLIP-190 to such microtubules and to the fusome is dependent upon Orbit/Mast to which it is complexed.  相似文献   

5.
An important group of microtubule associated proteins are the plus-end tracking proteins which includes the Mast/Orbit/CLASPs family amongst others. Several of these proteins have important functions during interphase and mitosis in the modulation of the dynamic properties of microtubules, however, the precise mechanism remains to be elucidated. To investigate the role of Mast in the regulation of microtubule behaviour during interphase, we used RNAi in Drosophila S2 culture cells stably expressing GFP-alpha-tubulin and followed the behaviour of microtubules in vivo. Mast depleted cells show a significant reduction of microtubule density and an abnormal interphase microtubule array that rarely reaches the cell cortex. Analysis of the dynamic parameters revealed that in the absence of Mast, microtubules are highly dynamic, constantly growing or shrinking. These alterations are characterized by a severe reduction in the transition frequencies to and from the pause state. Moreover, analysis of de novo microtubule polymerization after cold treatment showed that Mast is not required for nucleation since Mast depleted cells nucleate microtubules soon after return to normal temperature. Taken together these results suggest that Mast plays an essential role in reducing the dynamic behaviour of microtubules by specifically promoting the pause state.  相似文献   

6.
Controlling microtubule dynamics and spatial organization is a fundamental requirement of eukaryotic cell function. Members of the ORBIT/MAST/CLASP family of microtubule-associated proteins associate with the plus ends of microtubules, where they promote the addition of tubulin subunits into attached kinetochore fibers during mitosis and stabilize microtubules in the vicinity of the plasma membrane during interphase. To date, nothing is known about their function in plants. Here, we show that the Arabidopsis thaliana CLASP protein is a microtubule-associated protein that is involved in both cell division and cell expansion. Green fluorescent protein-CLASP localizes along the full length of microtubules and shows enrichment at growing plus ends. Our analysis suggests that CLASP promotes microtubule stability. clasp-1 T-DNA insertion mutants are hypersensitive to microtubule-destabilizing drugs and exhibit more sparsely populated, yet well ordered, root cortical microtubule arrays. Overexpression of CLASP promotes microtubule bundles that are resistant to depolymerization with oryzalin. Furthermore, clasp-1 mutants have aberrant microtubule preprophase bands, mitotic spindles, and phragmoplasts, indicating a role for At CLASP in stabilizing mitotic arrays. clasp-1 plants are dwarf, have significantly reduced cell numbers in the root division zone, and have defects in directional cell expansion. We discuss possible mechanisms of CLASP function in higher plants.  相似文献   

7.
Amniote epiblast cells differentiate into mesoderm and endoderm lineages during gastrulation through a process called epithelial-to-mesenchymal transition (EMT). Molecular regulation of gastrulation EMT is poorly understood. Here we show that epiblast epithelial status was maintained by anchoring microtubules to the basal cortex via CLIP-associated protein (CLASP), a microtubule plus-end tracking protein, and Dystroglycan, a transmembrane protein that bridges the cytoskeleton and basement membrane (BM). Mesoderm formation required down-regulation of CLASP and Dystroglycan, and reducing CLASP activity in pregastrulation epiblast cells caused ectopic BM breakdown and disrupted epiblast integrity. These effects were mediated through the CLASP-binding partner LL5. Live-imaging using EB1–enhanced GFP (eGFP) revealed that reducing CLASP and LL5 levels in the epiblast destabilized basal microtubules. We further show that Dystroglycan is localized to basolateral membrane in epiblast cells. Basal but not lateral localization of Dystroglycan was regulated by CLASP. We propose that epiblast–BM interaction requires CLASP- and Dystroglycan-mediated cortical microtubule anchoring, the disruption of which initiates gastrulation EMT.  相似文献   

8.
BACKGROUND: The pole-to-pole distance of the metaphase spindle is reasonably constant in a given cell type; in the case of vertebrate female oocytes, this steady-state length can be maintained for substantial lengths of time, during which time microtubules remain highly dynamic. Although a number of molecular perturbations have been shown to influence spindle length, a global understanding of the factors that determine metaphase spindle length has not been achieved. RESULTS: Using the Drosophila S2 cell line, we depleted or overexpressed proteins that either generate sliding forces between spindle microtubules (Kinesin-5, Kinesin-14, dynein), promote microtubule polymerization (EB1, Mast/Orbit [CLASP], Minispindles [Dis1/XMAP215/TOG]) or depolymerization (Kinesin-8, Kinesin-13), or mediate sister-chromatid cohesion (Rad21) in order to explore how these forces influence spindle length. Using high-throughput automated microscopy and semiautomated image analyses of >4000 spindles, we found a reduction in spindle size after RNAi of microtubule-polymerizing factors or overexpression of Kinesin-8, whereas longer spindles resulted from the knockdown of Rad21, Kinesin-8, or Kinesin-13. In contrast, and differing from previous reports, bipolar spindle length is relatively insensitive to increases in motor-generated sliding forces. However, an ultrasensitive monopolar-to-bipolar transition in spindle architecture was observed at a critical concentration of the Kinesin-5 sliding motor. These observations could be explained by a quantitative model that proposes a coupling between microtubule depolymerization rates and microtubule sliding forces. CONCLUSIONS: By integrating extensive RNAi with high-throughput image-processing methodology and mathematical modeling, we reach to a conclusion that metaphase spindle length is sensitive to alterations in microtubule dynamics and sister-chromatid cohesion, but robust against alterations of microtubule sliding force.  相似文献   

9.
We describe a Drosophila gene, orbit, that encodes a conserved 165-kD microtubule-associated protein (MAP) with GTP binding motifs. Hypomorphic mutations in orbit lead to a maternal effect resulting in branched and bent mitotic spindles in the syncytial embryo. In the larval central nervous system, such mutants have an elevated mitotic index with some mitotic cells showing an increase in ploidy. Amorphic alleles show late lethality and greater frequencies of hyperploid mitotic cells. The presence of cells in the hypomorphic mutant in which the chromosomes can be arranged, either in a circular metaphase or an anaphase-like configuration on monopolar spindles, suggests that polyploidy arises through spindle and chromosome segregation defects rather than defects in cytokinesis. A role for the Orbit protein in regulating microtubule behavior in mitosis is suggested by its association with microtubules throughout the spindle at all mitotic stages, by its copurification with microtubules from embryonic extracts, and by the finding that the Orbit protein directly binds to MAP-free microtubules in a GTP-dependent manner.  相似文献   

10.
One of the most intriguing aspects of mitosis is the ability of kinetochores to hold onto plus ends of microtubules that are actively gaining or losing tubulin subunits. Here, we show that CLASP1, a microtubule-associated protein, localizes preferentially near the plus ends of growing spindle microtubules and is also a component of a kinetochore region that we term the outer corona. A truncated form of CLASP1 lacking the kinetochore binding domain behaves as a dominant negative, leading to the formation of radial arrays of microtubule bundles that are highly resistant to depolymerization. Microinjection of CLASP1-specific antibodies suppresses microtubule dynamics at kinetochores and throughout the spindle, resulting in the formation of monopolar asters with chromosomes buried in the interior. Incubation with microtubule-stabilizing drugs rescues the kinetochore association with microtubule plus ends at the periphery of the asters. Our data suggest that CLASP1 is required at kinetochores for attached microtubules to exhibit normal dynamic behavior.  相似文献   

11.
Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant embryos undergoing early mitotic divisions revealed that chromosomes are unable to reach a stable metaphase alignment and that bipolar spindles collapse as centrosomes move progressively closer toward the cell center and eventually organize into a monopolar configuration. Similarly, soon after depletion of MAST/Orbit in Drosophila S2 cells by double-stranded RNA interference, cells are unable to form a metaphase plate and instead assemble monopolar spindles with chromosomes localized close to the center of the aster. In these cells, kinetochores either fail to achieve end-on attachment or are associated with short microtubules. Remarkably, when microtubule dynamics is suppressed in MAST-depleted cells, chromosomes localize at the periphery of the monopolar aster associated with the plus ends of well-defined microtubule bundles. Furthermore, in these cells, dynein and ZW10 accumulate at kinetochores and fail to transfer to microtubules. However, loss of MAST/Orbit does not affect the kinetochore localization of D-CLIP-190. Together, these results strongly support the conclusion that MAST/Orbit is required for microtubules to form functional attachments to kinetochores and to maintain spindle bipolarity.  相似文献   

12.
The motion of a chromosome during mitosis is mediated by a bundle of microtubules, termed a kinetochore fibre (K-fibre), which connects the kinetochore of the chromosome to a spindle pole. Once formed, mature K-fibres maintain a steady state length because the continuous addition of microtubule subunits onto microtubule plus ends at the kinetochore is balanced by their removal at their minus ends within the pole. This condition is known as 'microtubule poleward flux'. Chromosome motion and changes in position are then driven by changes in K-fibre length, which in turn are controlled by changes in the rates at which microtubule subunits are added at the kinetochore and/or removed from the pole. A key to understanding the role of flux in mitosis is to identify the molecular factors that drive it. Here we use Drosophila melanogaster S2 cells expressing alpha-tubulin tagged with green fluorescent protein, RNA interference, laser microsurgery and photobleaching to show that the kinetochore protein MAST/Orbit - the single CLASP orthologue in Drosophila - is an essential component for microtubule subunit incorporation into fluxing K-fibres.  相似文献   

13.
Correct positioning of the mitotic spindle is critical to establish the correct cell-division plane. Spindle positioning involves capture of astral microtubules and generation of pushing/pulling forces at the cell cortex. Here we show that the tau-related protein MAP4 and the microtubule rescue factor CLASP1 are essential for maintaining spindle position and the correct cell-division axis in human cells. We propose that CLASP1 is required to correctly capture astral microtubules, whereas MAP4 prevents engagement of excess dynein motors, thereby protecting the system from force imbalance. Consistent with this, MAP4 physically interacts with dynein-dynactin in vivo and inhibits dynein-mediated microtubule sliding in vitro. Depletion of MAP4, but not CLASP1, causes spindle misorientation in the vertical plane, demonstrating that force generators are under spatial control. These findings have wide biological importance, because spindle positioning is essential during embryogenesis and stem-cell homeostasis.  相似文献   

14.
In this study we describe a novel Drosophila protein Jupiter, which shares properties with several structural microtubule-associated proteins (MAPs) including TAU, MAP2, MAP4. Jupiter is a soluble unfolded molecule with the high net positive charge, rich in Glycine. It possesses two degenerated repeats around the sequence PPGG, separated by a Serine-rich region. Jupiter associates with microtubules in vitro and, fused with the green fluorescent protein (GFP), is an excellent marker to follow microtubule dynamics in vivo. In a jupiter transgenic Drosophila strain generated by the "protein-trap" technique, Jupiter:GFP fusion protein localizes to the microtubule network through the cell cycle at the different stages of development. We found particularly high Jupiter:GFP concentrations in the young embryo, larval nervous system, precursors of eye photoreceptors and adult ovary. Moreover, from jupiter:gfp embryos we have established two permanent cell lines presenting strongly fluorescent microtubules during the whole cell cycle. In these cells, the distribution of the Jupiter:GFP fusion protein reproduces microtubule behavior upon treatment by the drugs colchicine and taxol. The jupiter cell lines and fly strain should be of wide interest for biologists interested in in vivo analysis of microtubule dynamics.  相似文献   

15.
Orbit, a Drosophila ortholog of microtubule plus-end enriched protein CLASP, plays an important role in many developmental processes involved in microtubule dynamics. Previous studies have shown that Orbit is required for asymmetric stem cell division and cystocyte divisions in germline cysts and for the development of microtubule networks that interconnect oocyte and nurse cells during oogenesis. Here, we examined the cellular localization of Orbit and its role in cyst formation during spermatogenesis. In male germline stem cells, distinct localization of Orbit was first observed on the spectrosome, which is a spherical precursor of the germline-specific cytoskeleton known as the fusome. In dividing stem cells and spermatogonia, Orbit was localized around centrosomes and on kinetochores and spindle microtubules. After cytokinesis, Orbit remained localized on ring canals, which are cytoplasmic bridges between the cells. Thereafter, it was found along fusomes, extending through the ring canal toward all spermatogonia in a cyst. Fusome localization of Orbit was not affected by microtubule depolymerization. Instead, our fluorescence resonance energy transfer experiments suggested that Orbit is closely associated with F-actin, which is abundantly found in fusomes. Surprisingly, F-actin depolymerization influenced neither fusome organization nor Orbit localization on the germline-specific cytoskeleton. We revealed that two conserved regions of Orbit are required for fusome localization. Using orbit hypomorphic mutants, we showed that the protein is required for ring canal formation and for fusome elongation mediated by the interaction of newly generated fusome plugs with the pre-existing fusome. The orbit mutation also disrupted ring canal clustering, which is essential for folding of the spermatogonia after cytokinesis. Orbit accumulates around centrosomes at the onset of spermatogonial mitosis and is required for the capture of one of the duplicated centrosomes onto the fusome. Moreover, Orbit is involved in the proper orientation of spindles towards fusomes during synchronous mitosis of spermatogonial cysts.  相似文献   

16.
Cytoplasmic microtubules can be divided into two subpopulations: 1) those adjacent to the nucleus (perinuclear), and 2) those distributed between the myofilament bundles (nonperinuclear). Previous observations (Cartwright and Goldstein, '83) indicate total cytoplasmic microtubule numeric density increases to a maximum at 5-9 days and decreases to the steady value of the adult muscle. We have examined the numeric density (mean numbers of microtubule profiles per micron2 cross-sectional area) of the perinuclear subpopulation and compared it to the numeric density of the total cytoplasmic microtubule population in postnatally developing rat papillary muscle ages 1, 3, 5, 9, 21, and 42 days, and adult. The perinuclear region was defined as the area around the nucleus which extends to the 0.273 micron from the nuclear envelope. The density of perinuclear microtubules did not change with postnatal development. Our study suggests that perinuclear microtubules are a separate and relatively stable subpopulation of the total population of cytoplasmic microtubules and may serve a function different from that of the more variable nonperinuclear microtubules.  相似文献   

17.
A steady-state metaphase spindle maintains constant length, although the microtubules undergo intensive dynamics. Tubulin dimers are incorporated at plus ends of spindle microtubules while they are removed from the minus ends, resulting in poleward movement. Such microtubule flux is regulated by the microtubule rescue factors CLASPs at kinetochores and depolymerizing protein Kif2a at the poles, along with other regulators of microtubule dynamics. How microtubule polymerization and depolymerization are coordinated remains unclear. Here we show that TPX2, a microtubule-bundling protein and activator of Aurora A, plays an important role. TPX2 was phosphorylated by Aurora A during mitosis. Its phospho-null mutant caused short metaphase spindles coupled with low microtubule flux rate. Interestingly, phosphorylation of TPX2 regulated its interaction with CLASP1 but not Kif2a. The effect of its mutant in shortening the spindle could be rescued by codepletion of CLASP1 and Kif2a that abolished microtubule flux. Together we propose that Aurora A–dependent TPX2 phosphorylation controls mitotic spindle length through regulating microtubule flux.  相似文献   

18.
Microtubule-organizing centers (MTOCs) concentrate microtubule nucleation, attachment and bundling factors and thus restrict formation of microtubule arrays in spatial and temporal manner. How MTOCs occur remains an exciting question in cell biology. Here, we show that the transforming acidic coiled coil–related protein Mia1p/Alp7p functions in emergence of large MTOCs in interphase fission yeast cells. We found that Mia1p was a microtubule-binding protein that preferentially localized to the minus ends of microtubules and was associated with the sites of microtubule attachment to the nuclear envelope. Cells lacking Mia1p exhibited less microtubule bundles. Microtubules could be nucleated and bundled but were frequently released from the nucleation sites in mia1Δ cells. Mia1p was required for stability of microtubule bundles and persistent use of nucleation sites both in interphase and postanaphase array dynamics. The γ-tubulin–rich material was not organized in large perinuclear or microtubule-associated structures in mia1Δ cells. Interestingly, absence of microtubules in dividing wild-type cells prevented appearance of large γ-tubulin–rich MTOC structures in daughters. When microtubule polymerization was allowed, MTOCs were efficiently assembled de novo. We propose a model where MTOC emergence is a self-organizing process requiring the continuous association of microtubules with nucleation sites.  相似文献   

19.
Cell morphogenesis requires dynamic communication between actin filaments and microtubules which is mediated, at least in part, by direct structural links between the two cytoskeletal systems. Here, we examined interaction between the CLIP-associated proteins (CLASP) CLASP1 and CLASP2, and actin filaments. We demonstrate that, in addition to a well-established association with the distal ends of microtubules, CLASP2alpha co-localizes with stress fibers, and that both CLASP1alpha and CLASP2alpha co-immunoprecipitate with actin. GFP-CLASP2alpha exhibits retrograde flow in the lamellipodia of Xenopus primary fibroblasts and in the filopodia of Xenopus spinal cord neurons. A deletion mapping analysis reveals that both the microtubule-binding domain of CLASP2 (which is homologous between all CLASPs) and the N-terminal dis1/TOG domain of CLASP2alpha (which is homologous between alpha isoforms) possess actin-binding activity. Fluorescence resonance energy transfer experiments demonstrate significant energy transfer between YFP-CLASP2alpha and CFP-actin. Our results indicate that CLASPs function as actin/microtubule crosslinkers in interphase cells. We propose that CLASPs facilitate recognition of actin filaments by the plus ends of growing microtubules at the initial stages of actin-microtubule interaction. Cell Motil.  相似文献   

20.
H S Shpetner  R B Vallee 《Cell》1989,59(3):421-432
We report that calf brain microtubules prepared without nucleotide contain, in addition to kinesin and dynein, a polypeptide of 100 kd that could be dissociated by nucleotide. The protein was selectively extracted from microtubules using a combination of GTP and AMP-PNP. The extract contained microtubule-stimulated (6-fold) MgATPase activity that partitioned into two components upon further purification: the 100 kd polypeptide and a soluble activating fraction. The 100 kd protein induced microtubules to form hexagonally packed bundles containing periodic cross bridges spaced 13 nm apart. In the presence of ATP and the activating fraction, bundles fragmented, elongated, and exhibited other behavior indicative of sliding between microtubules. These findings indicate that the 100 kd protein is part of a novel mechanochemical enzyme, which we term "dynamin", that may mediate microtubule sliding in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号