首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We examined whether plasma concentrations of nonglucose insulin secretagogues are associated with prehepatic insulin secretion rates (ISR) in nondiabetic, insulin-resistant, human immunodeficiency virus (HIV)-infected, lipodystrophic patients (LIPO). Additionally, the negative feedback of insulin on ISR was evaluated. ISR were estimated by deconvolution of plasma C-peptide concentrations during fasting (basal) and during the last 30 min of a 120-min euglycemic insulin clamp (40 mU.m(-2).min(-1)). Eighteen normoglycemic LIPO were compared with 25 normoglycemic HIV-infected patients without lipodystrophy (controls). Thirty minutes before start of the clamp, a bolus of glucose was injected intravenously to stimulate endogenous insulin secretion. Insulin sensitivity index (SiRd) was estimated from glucose tracer analysis. LIPO displayed increased basal ISR (69%), clamp ISR (114%), basal insulin (130%), and clamp insulin (32%), all P < or = 0.001, whereas SiRd was decreased (57%, P < 0.001). In LIPO, ISRbasal correlated significantly with basal insulin, alanine, and glucagon (all r > 0.65, P < 0.01), but not with glucose. In control subjects, ISR(basal) correlated significantly with insulin, glucagon, and glucose (all r > 0.41, P < 0.05), but not with alanine. In LIPO, ISRclamp correlated significantly with clamp free fatty acids (FFA), alanine, triglyceride, and glucagon (all r > 0.51, P < 0.05). In control subjects, ISRclamp correlated with clamp triglyceride (r = 0.45, P < 0.05). Paradoxically, in LIPO, ISRclamp correlated positively with clamp insulin (r = 0.68, P < 0.01), which suggests an absent negative feedback of insulin on ISR. Our data support evidence that lipodystrophic, nondiabetic, HIV-infected patients exhibit increased ISR, which can be partially explained by an impaired negative feedback of insulin on beta-cells and an increased stimulation of ISR by FFA, alanine, triglyceride, and glucagon.  相似文献   

3.
There is experimental evidence that a source of fatty acids (FAs) that is either exogenous or endogenous is necessary to support normal insulin secretion. Therefore, FAs comodulate the glucose-induced pancreatic insulin secretion. To assess the role of FAs, 16 morbidly obese nondiabetic patients and 6 healthy volunteers were studied. The controls and the obese subjects, before and after diet-induced weight loss, spent 24 h in a calorimetric chamber, where they consumed standardized meals. Hourly blood samples were drawn from a central venous catheter for the measurement of glucose, C-peptide, and nonesterified fatty acid (NEFA) concentrations. Insulin sensitivity was measured (as the M value) by euglycemic hyperinsulinemic clamp. In the present study, we propose a mathematical model in which insulin secretion rate (ISR) is expressed as a function of both plasma glucose and NEFA concentrations. Model parameters, obtained by fitting the individual experimental data of plasma C-peptide concentration, gave an estimated ISR comparable with that obtained by the deconvolution method. To evaluate the performance of the model in an experimental condition in which incretin effect was minimized, previous data on insulin secretion following a butter load and subsequent hyperglycemic clamp were reanalyzed. This model of nutrient-stimulated insulin secretion is the first attempt to represent in a simple way the interaction between glucose and NEFA in the regulation of insulin secretion in the beta-cell and explains, at least in part, the "potentiation factor" used in previous models to account for other control factors different from glucose after either an intravenous infusion of glucose or a mixed meal.  相似文献   

4.
The levels of glucose, immunoreactive insulin and C-peptide were studied in 13 obese patients and 10 control subjects, in basal conditions and after an oral glucose load (OGTT). The IRI and C-peptide levels were higher in the obese patients than in the controls either during fasting or during the OGTT. The C-peptide/IRI ratio decreased after the oral glucose load in both groups studied. However in the obese subjects the values for the C-peptide/IRI ratio were lower than those found in the controls during the same observation period. These results suggest the hypothesis that in the obese patients the high IRI levels which reflect an increased insulin secretion, are, at least in part, due to an early saturation of the hepatic degradation of insulin and/or to a decrease in the specific receptor sites normally present in the cell membranes.  相似文献   

5.
One of the most promising cell-based therapies for combating insulin-dependent diabetes entails the use of genetically engineered non-β cells that secrete insulin in response to physiologic stimuli. A normal pancreatic β cell secretes insulin in a biphasic manner in response to glucose. The first phase is characterized by a transient stimulation of insulin to rapidly lower the blood glucose levels, which is followed by a second phase of insulin secretion to sustain the lowered blood glucose levels over a longer period of time. Previous studies have demonstrated hepatic and enteroendocrine cells to be appropriate hosts for recombinant insulin expression. Due to different insulin secretion kinetics from these cells, we hypothesized that a combination of the two cell types would mimic the biphasic insulin secretion of normal β cells with higher fidelity than either cell type alone. In this study, insulin secretion experiments were conducted with two hepatic cell lines (HepG2 and H4IIE) transduced with 1 of 3 adenoviruses expressing the insulin transgene and with a stably transfected recombinant intestinal cell line (GLUTag-INS). Insulin secretion was stimulated by exposing the cells to glucose only (hepatic cells), meat hydrolysate only (GLUTag-INS), or to a cocktail of the two secretagogues. It was found experimentally that the recombinant hepatic cells secreted insulin in a more sustained manner, whereas the recombinant intestinal cell line exhibited rapid insulin secretion kinetics upon stimulation. The insulin secretion profiles were computationally combined at different cell ratios to arrive at the combinatorial kinetics. Results indicate that combinations of these two cell types allow for tuning the first and second phase of insulin secretion better than either cell type alone. This work provides the basic framework in understanding the secretion kinetics of the combined system and advances it towards preclinical studies.  相似文献   

6.
Insulin and C-peptide (free insulin and C-peptide in insulin-treated patients) were measured after glucose stimulation in nine Type II diabetics on chlorpropamide, eleven insulin-treated maturity-onset diabetics and in 8 normal controls. Dissociation between C-peptide and insulin response to glucose was observed in several diabetics. The relation between incremental molar areas under C-peptide and insulin curves, after glucose challenge (delta CPR - delta IRI/delta CPR) were used to evaluate the hepatic insulin extraction in all but the insulin-treated diabetics. The lower insulin requirements and better control of the short-duration insulin-treated maturity-onset diabetics in relation to the long-term ones could not be explained either by the residual insulin secretion or by the level of "insulin antibodies". The chlorpropamide-responsive patients presented higher insulin levels after the glucose challenge and a lower hepatic insulin extraction than the non-responsive ones.  相似文献   

7.
The present study was undertaken to establish in normal volunteers the alterations in beta-cell responsiveness to glucose associated with a constant infusion of glucagon-like peptide-1 (GLP-1) or a pretreatment infusion for 60 min. A high-dose graded glucose infusion protocol was used to explore the dose-response relationship between glucose and insulin secretion. Studies were performed in 10 normal volunteers, and insulin secretion rates (ISR) were calculated by deconvolution of peripheral C-peptide levels by use of a two-compartmental model that utilized mean kinetic parameters. During the saline study, from 5 to 15 mM glucose, the relationship between glucose and ISR was linear. Constant GLP-1 infusion (0.4 pmol x kg(-1) x min(-1)) shifted the dose-response curve to the left, with an increase in the slope of this curve from 5 to 9 mM glucose from 71.0 +/- 12.4 pmol x min(-1) x mM(-1) during the saline study to 241.7 +/- 36.6 pmol x min(-1) x mM(-1) during the constant GLP-1 infusion (P < 0.0001). GLP-1 consistently stimulated a >200% increase in ISR at each 1 mM glucose interval, maintaining plasma glucose at <10 mM (P < 0.0007). Pretreatment with GLP-1 for 60 min resulted in no significant priming of the beta-cell response to glucose (P = 0.2). Insulin clearance rates were similar in all three studies at corresponding insulin levels. These studies demonstrate that physiological levels of GLP-1 stimulate glucose-induced insulin secretion in a linear manner, with a consistent increase in ISR at each 1 mM glucose interval, and that they have no independent effect on insulin clearance and no priming effect on subsequent insulin secretory response to glucose.  相似文献   

8.
Obesity is associated with insulin resistance and hyperinsulinemia, which is considered to be a core component in the pathophysiology of obesity-related comorbidities. As yet it is unknown whether insulin resistance and hyperinsulinemia already develop during weight gain within the normal range. In 10 healthy male subjects the effect of intentional weight gain by 2 BMI points was examined on insulin. C-peptide and glucose levels following a meal, 75 g of glucose, and a two-step hyperglycemic clamp increased plasma glucose by 1.38 and 2.75 mmol/l, respectively. Baseline insulin, C-peptide, and glucose concentrations were significantly higher after weight gain from 21.8 to 23.8 kg/m(2) BMI within 4(1/2) mo. Calculations of insulin secretion and clearance indicate that reduced insulin clearance contributes more to post-weight gain basal hyperinsulinemia than insulin secretion. Following oral or intravenous stimulation insulin concentrations were significantly higher post-weight gain during all three test conditions, whereas C-peptide and glucose levels did not differ. Calculations of insulin secretion and clearance demonstrated that higher stimulated insulin concentrations are entirely due to clearance but not secretion. Despite significantly higher insulin levels, the rate of intravenous glucose required to maintain the defined elevation of glucose levels was either identical (1.38 mmol/l) or even significantly lower (2.75 mmol/l) following weight gain. The present study demonstrates for the first time that insulin resistance already develops during weight gain within the normal range of body weight. The associated basal and stimulated hyperinsulinemia is the result of differentiated changes of insulin secretion and clearance, respectively.  相似文献   

9.
Isolated perifused rat islets were stimulated with glucose, exogenous insulin, or carbachol. C-peptide and, where possible, insulin secretory rates were measured. Glucose (8-10 mm) induced dose-dependent and kinetically similar patterns of C-peptide and insulin secretion. The addition of 100 nm bovine insulin had no effect on C-peptide release in response to 8-10 mm glucose stimulation. The addition of 100 nm bovine insulin or 500 nm human insulin together with 3 mm glucose had no stimulatory effect on C-peptide secretion rates from perifused rat islets. Stimulation with carbachol plus 7 mm glucose enhanced both C-peptide and insulin secretion, and the further addition of 100 nm bovine insulin had no inhibitory effect on C-peptide secretory rates under this condition. Perifusion studies using pharmacologic inhibitors (genistein and wortmannin) of the kinases thought to be involved in insulin signaling potentiated 10 mm glucose-induced secretion. The results support the following conclusions. 1) C-peptide release rates accurately reflect insulin secretion rates from collagenase-isolated, perifused rat islets. 2) Exogenously added bovine insulin exerts no inhibitory effect on release to several agonists including glucose. 3) In the presence of 3 mm glucose, exogenously added bovine or human insulin do not stimulate endogenous insulin secretion.  相似文献   

10.
Blood glucose, plasma insulin and C-peptide responses to oral glucose tolerance test (OGTT) were studied under basal conditions and immediately after 90-min exercise (60% VO2 max) in nondiabetic subjects with normal or impaired glucose tolerance. During the postexercise recovery blood glucose response to OGTT was increased in normal subjects and markedly decreased in those with impaired glucose tolerance, while insulin and C-peptide responses were diminished in both subgroups. The ratio of blood glucose to insulin was similarly elevated in all subjects. Comparing with basal conditions no significant changes were found in C-peptide to insulin ratio in response to OGTT after exercise, although a tendency towards an elevation of this ratio was noted in the subjects with impaired glucose tolerance. The data indicate that the reduced insulin response to OGTT during postexercise recovery in healthy subjects is due to diminished insulin secretion without any substantial changes in the hormone removal from blood, whereas in the glucose intolerant men the latter process may be enhanced.  相似文献   

11.
Circulating insulin is dependent on a balance between insulin appearance through secretion and insulin clearance. However, to what extent changes in insulin clearance contribute to the increased insulin levels after glucagon administration is not known. This study therefore assessed and quantified any potential effect of glucagon on insulin kinetics in mice. Prehepatic insulin secretion in mice was first estimated following glucose (0.35 g/kg i.v.) and following glucose plus glucagon (10 μg/kg i.v.) using deconvolution of plasma C-peptide concentrations. Plasma concentrations of glucose, insulin, and glucagon were then measured simultaneously in individual mice following glucose alone or glucose plus glucagon (pre dose and at 1, 5, 10, 20 min post). Using the previously determined insulin secretion profiles and the insulin concentration-time measurements, a population modeling analysis was applied to estimate the one-compartment kinetics of insulin disposition with and without glucagon. Glucagon with glucose significantly enhanced prehepatic insulin secretion (Cmax and AUC0-20) compared to that with glucose alone (p < 0.0001). From the modeling analysis, the population mean and between-animal SD of insulin clearance was 6.4 ± 0.34 mL/min for glucose alone and 5.8 ± 1.5 mL/min for glucagon plus glucose, with no significant effect of glucagon on mean insulin clearance. Therefore, we conclude that the enhancement of circulating insulin after glucagon administration is solely due to stimulated insulin secretion.  相似文献   

12.
The secretion of insulin by the pancreas of the newborn rhesus monkey that had been made experimentally hyperinsulinemic in utero was studied in 18 animals. Chronic in utero hyperinsulinemia was produced by the continuous subcutaneous delivery of 4.75 units of insulin per day for 18 +/- 1 days. After delivery, the insulin-containing pump was removed to allow neonatal insulin levels to drop to normal levels. By 6.5 +/- 1.0 hr after pump removal, plasma glucose, insulin, and C-peptide immunoreactivity (CPIR) were comparable in the control and experimental animals. At that point 300 micrograms of glucagon/kg body weight was given iv to stimulate insulin secretion. After 30 min a significant elevation (expressed as the percentage of basal levels) in plasma glucose by 250%, insulin by 200%, and CPIR by 200% was observed in the control animals. In contrast, no changes in plasma insulin or CPIR concentrations occurred, with an attenuated glucose response that was only one-fifth of the control response, in the experimental animals. These results along with the observed lowered concentrations of CPIR in the plasma and insulin in the pancreas at birth can be interpreted as evidence that insulin is an inhibitor of its synthesis and secretion in utero and that this abnormal intrauterine environment causes changes that persist into extrauterine life.  相似文献   

13.
The aim of the present study was to investigate the secretion and the hepatic removal of insulin in a group of 14 unaffected offspring of 14 type 2 (noninsulin-dependent) diabetic couples compared to 14 healthy subjects without family history of diabetes mellitus. The two groups, each consisting of 5 obese and 9 nonobese subjects, were carefully matched for sex, age, and body weight. We examined glucose, insulin, and C-peptide levels, as well as C-peptide to insulin ratios and relations during the oral glucose tolerance test. Glucose concentrations and incremental areas were similar in the two groups, as well as insulin and C-peptide levels and areas. C-peptide to insulin molar ratios, both in fasting state and after glucose load, as well as relations between C-peptide and insulin incremental areas were not different. Our results suggest that the healthy offspring of type 2 diabetic couples have a normal response of beta-cell to oral glucose as well as a normal removal of insulin by the liver.  相似文献   

14.
Plasma glucose, insulin, and C-peptide concentrations were determined in response to graded infusions of glucose, and insulin secretion rates were calculated over each sampling period. Measurements were also made of insulin clearance, resistance to insulin-mediated glucose, uptake, and the plasma glucose, insulin, and C-peptide concentrations at hourly intervals from 8:00 AM to 4:00 PM in response to breakfast and lunch. Plasma glucose, insulin, and C-peptide concentrations were significantly (P < 0.01) higher in obese women in response to the graded intravenous glucose infusion, associated with a 40% (P < 0.005) greater insulin secretory response. Degree of insulin resistance correlated positively (P < 0.05) with the increase in insulin secretion rate in both nonobese (r = 0.52) and obese (r = 0.58) groups and inversely (P < 0.05) with the decrease in insulin clearance in obese (r = -0.46) and nonobese (r = -0.39) individuals. Weight loss was associated with significantly lower plasma glucose, insulin, and C-peptide concentrations in response to graded glucose infusions and in day-long insulin concentrations. Neither insulin resistance nor the insulin secretory response changed after weight loss, whereas there was a significant increase in the rate of insulin clearance during the glucose infusion. It is concluded that 1) obesity is associated with a shift to the left in the glucose-stimulated insulin secretory dose-response curve as well as a decrease in insulin clearance and 2) changes in insulin secretion and insulin clearance in obese women are more a function of insulin resistance than obesity.  相似文献   

15.
Assessment of insulin secretion in humans under physiological conditions has been a challenge because of its complex interplay with insulin action and hepatic insulin extraction. The possibility of simultaneously assessing beta-cell function, insulin sensitivity, and hepatic insulin extraction under physiological conditions using a simple protocol is appealing, since it has the potential to provide novel insights regarding the regulation of fasting and postprandial glucose metabolism in diabetic and nondiabetic humans. In this Perspective, we review data indicating that an oral glucose tolerance test (OGTT) or a meal test is able to accomplish this goal when interpreted with the oral beta-cell minimal model. We begin by using the well-established intravenous minimal model to highlight how the oral minimal model was developed and how the oral assessment parallels that of an intravenous glucose tolerance test (IVGTT). We also point out the unique aspects of both approaches in relation to their ability to assess different aspects of the beta-cell secretory cascade. We review the ability of the oral model to concurrently measure insulin sensitivity and hepatic insulin extraction, thereby enabling it to quantitatively portray the complex relationship among beta-cell function, hepatic insulin extraction, and insulin action. In addition, data from 204 individuals (54 young and 159 elderly) who underwent both IVGTT and meal tolerance tests are used to illustrate how these different approaches provide complementary but differing insights regarding the regulation of beta-cell function in humans.  相似文献   

16.
Elevated plasma FFA cause beta-cell lipotoxicity and impair insulin secretion in nondiabetic subjects predisposed to type 2 diabetes mellitus [T2DM; i.e., with a strong family history of T2DM (FH+)] but not in nondiabetic subjects without a family history of T2DM. To determine whether lowering plasma FFA with acipimox, an antilipolytic nicotinic acid derivative, may enhance insulin secretion, nine FH+ volunteers were admitted twice and received in random order either acipimox or placebo (double-blind) for 48 h. Plasma glucose/insulin/C-peptide concentrations were measured from 0800 to 2400. On day 3, insulin secretion rates (ISRs) were assessed during a +125 mg/dl hyperglycemic clamp. Acipimox reduced 48-h plasma FFA by 36% (P < 0.001) and increased the plasma C-peptide relative to the plasma glucose concentration or DeltaC-peptide/Deltaglucose AUC (+177%, P = 0.02), an index of improved beta-cell function. Acipimox improved insulin sensitivity (M/I) 26.1 +/- 5% (P < 0.04). First- (+19 +/- 6%, P = 0.1) and second-phase (+31 +/- 6%, P = 0.05) ISRs during the hyperglycemic clamp also improved. This was particularly evident when examined relative to the prevailing insulin resistance [1/(M/I)], as both first- and second-phase ISR markedly increased by 29 +/- 7 (P < 0.05) and 41 +/- 8% (P = 0.02). There was an inverse correlation between fasting FFA and first-phase ISR (r2 = 0.31, P < 0.02) and acute (2-4 min) glucose-induced insulin release after acipimox (r2 =0.52, P < 0.04). In this proof-of-concept study in FH+ individuals predisposed to T2DM, a 48-h reduction of plasma FFA improves day-long meal and glucose-stimulated insulin secretion. These results provide additional evidence for the important role that plasma FFA play regarding insulin secretion in FH+ subjects predisposed to T2DM.  相似文献   

17.
The role of preserved beta-cell function in preventing ketoacidosis in type I insulin-dependent diabetes was assessed in eight patients with and seven patients without residual beta-cell function as determined from C-peptide concentrations. After 12 hours of insulin fatty-acid, and glycerol concentrations were all significantly higher in patients without beta-cell function than in those with residual secretion. Mean blood glucose concentrations reached 17.2 +/- SE of mean 1.3 mmol/l (310 +/- 23 mg/100 ml) in the first group compared with 8.8 +/- 1.4 mmol/l (159 +/- 25 mg/100 ml) in the second (P less than 0.01), while 3-hydroxybutyrate concentrations rose to 5.5 +/- mmol/l (57 +/- 5 mg/100 ml) and 1.4 +/- 0.3 mmol/l (15 +/- 3 mg/100 ml) in the two groups respectively (P less than 0.01). Individual mean C-peptide concentrations showed a significant inverse correlation with the final blood glucose values (r = -0.91; P less than 0.02). These findings strongly suggest that even minimal residual insulin secretion is important for metabolic wellbeing in diabetes and may prevent the development of severe ketoacidosis when insulin delivery is inadequate.  相似文献   

18.
Many obese middle-aged rhesus monkeys (Macaca mulatta) spontaneously develop noninsulin dependent diabetes mellitus (NIDDM). Basal hyperinsulinemia and increased stimulated plasma insulin levels are associated with this obesity and precede the onset of overt diabetes. The present studies sought to determine the relative contributions of enhanced insulin secretion and of reduced insulin clearance to this early obesity-associated hyperinsulinemia. Direct simultaneous measurement of portal and jugular vein insulin levels in two normal monkeys showed a constant rate of hepatic insulin extraction of 56±3% over the range of peripheral insulin levels from 351±113 to 625±118 pmol/L. In 33 additional monkeys ranging from normal to diabetic, basal C-peptide levels were examined as an indicator of β-cell secretion and the molar ratio of plasma C-peptide to insulin (C/I ratio) under basal steady state conditions calculated as an index of hepatic insulin extraction. Well in advance of overt diabetes, there was a progressive decline of 67% in the apparent hepatic insulin extraction rate in association with increased obesity and plasma insulin levels. Basal insulin levels and hepatic insulin extraction returned toward normal in monkeys with impaired glucose tolerance and in those with overt diabetes. We conclude that reduced insulin disposal, probably due to reduced hepatic extraction of insulin, in addition to increased β-cell activity, contributes to the development of basal hyperinsulinemia in obese rhesus monkeys progressing toward NIDDM. In addition, in overt diabetes, normal hepatic insulin extraction in the presence of limited β-cell secretion may exacerbate the hypoinsulinemic state. (OBESITY RESEARCH 1993; 1:252–260)  相似文献   

19.
Interactions between leptin and insulin have been shown previously, in vitro and in vivo. In this study, we evaluate the associations of leptin levels with insulin secretion and insulin sensitivity in type 2 diabetes. Fasting leptin levels, HbA 1c, glucose, insulin, C-peptide, intact and des-31,32-proinsulin were measured in 100 non-insulin-treated type 2 diabetic patients. Glucose, insulin and C-peptide were measured 2 hours after an oral glucose load. Insulin resistance and beta-cell function were calculated using HOMA. Leptin levels were found to be associated with all measures of beta-cell secretion: with fasting and 2 hours insulin and C-peptide, with intact and des-31,32-proinsulin concentrations, and with beta-cell secretion estimated with HOMA. This association was independent of age and body fat in women, but in men, associations with insulin and C-peptide weakened after controlling for fat mass, whereas those with intact and des-31,32-proinsulin disappeared. Fasting insulin and C-peptide levels were also significant in multiple regression analyses, besides gender and fat mass. Insulin resistance, as assessed by HOMA, was strongly correlated with leptin, also after correction for age and fat mass in both genders. We conclude that, besides fat mass and gender - the main determinants for leptin levels in type 2 diabetic subjects as in healthy subjects - insulin secretion and the degree of insulin resistance also seem to contribute significantly to leptin levels.  相似文献   

20.
In order to explore whether or not the negative feedback mechanism of insulin per se on insulin secretion exists in man, changes in plasma C-peptide immunoreactivity (CPR), as an index of pancreatic B cells secretory function, were studied in 6 nonobese healthy volunteers in the presence of high circulating levels of exogenous insulin. 10% glucose was infused concurrently so as to maintain blood sugar at the basal level. The insulin-glucose infusion was maintained for 120 minutes, achieving mean plasma levels of 140-180 mu1/ml. After this period, the insulin infusion was continued at the same rate for an additional 10 minutes while the glucose was omitted. Despite the elevated level of circulating insulin, no significant change in plasma CPR concentration was observed so long as the blood sugar was maintained at the basal levels. Following cessation of the glucose infusion, the plasma CPR levels declined with a decrease in blood sugar level. Under the conditions of the present study, no inhibitory effect of exogenous insulin on the secretory function of the B cells was noticed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号