首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Edwardsiella tarda is pathogen of fish and other animals. The aim of this study was to investigate the viable but nonculturable (VBNC) state and virulence retention of this bacterium. Edwardsiella tarda CW7 was cultured in sterilized aged seawater at 4 degrees C. Total cell counts remained constant throughout the 28-day period by acridine orange direct counting, while plate counts declined to undetectable levels (<0.1 CFU/ml) within 28 days by plate counting. The direct viable counts, on the other hand, declined to ca. 10(9) CFU/ml active cells and remained fairly constant at this level by direct viable counting. These results indicated that a large population of cells existed in a viable but nonculturable state. VBNC E. tarda CW7 could resuscitate in experimental chick embryos and in the presence of nutrition with a temperature upshift. The resuscitative times were 6 days and 8 days, respectively. The morphological changes of VBNC, normal, and resuscitative E. tarda CW7 cells were studied with a scanning electron microscope. The results showed that when the cells entered into the VBNC state, they gradually changed in shape from short rods to coccoid and decreased in size, but the resuscitative cells did not show any obvious differences from the normal cells. The VBNC and the resuscitative E. tarda CW7 cells were intraperitoneally inoculated into turbot separately, and the fish inoculated with the resuscitative cells died within 7 days, which suggested that VBNC E. tarda CW7 might retain pathogenicity.  相似文献   

2.
3.
Like many other gram-negative bacteria, the human pathogen Vibrio vulnificus is induced into a viable but nonculturable (VBNC) state by incubation at low temperatures. The ability of any bacterium to resuscitate from this dormant state would appear to be essential if the VBNC state is truly a survival strategy. The question as to whether the culturable cells which appear following removal of the inducing stress are a result of true resuscitation or of regrowth of a few residual culturable cells has long been debated. V. vulnificus was examined for its ability to resuscitate from this state following a temperature upshift. Several lines of investigation, including dilution studies, determination of the time necessary for appearance of a culturable population, and the effects of nutrient on recovery, all indicated that, at least for V. vulnificus, true resuscitation does occur. Our studies further suggest that nutrient is in some way inhibitory to the resuscitation of cells in the VBNC state and that studies which add nutrient in an attempt to detect resuscitation are able to detect only residual culturable cells which might be present and which were not inhibited by the added nutrient.  相似文献   

4.
Entry and exit from dormancy are essential survival mechanisms utilized by microorganisms to cope with harsh environments. Many bacteria, including the opportunistic human pathogen Vibrio vulnificus, enter a form of dormancy known as the viable but nonculturable (VBNC) state. VBNC cells can resuscitate when suitable conditions arise, yet the molecular mechanisms facilitating resuscitation in most bacteria are not well understood. We discovered that bacterial cell-free supernatants (CFS) can awaken preexisting dormant vibrio populations within oysters and seawater, while CFS from a quorum sensing mutant was unable to produce the same resuscitative effect. Furthermore, the quorum sensing autoinducer AI-2 could induce resuscitation of VBNC V. vulnificus in vitro, and VBNC cells of a mutant unable to produce AI-2 were unable to resuscitate unless the cultures were supplemented with exogenous AI-2. The quorum sensing inhibitor cinnamaldehyde delayed the resuscitation of wild-type VBNC cells, confirming the importance of quorum sensing in resuscitation. By monitoring AI-2 production by VBNC cultures over time, we found quorum sensing signaling to be critical for the natural resuscitation process. This study provides new insights into the molecular mechanisms stimulating VBNC cell exit from dormancy, which has significant implications for microbial ecology and public health.  相似文献   

5.
6.
In Argentina, as in other countries of Latin America, cholera has occurred in an epidemic pattern. Vibrio cholerae O1 is native to the aquatic environment, and it occurs in both culturable and viable but nonculturable (VNC) forms, the latter during interepidemic periods. This is the first report of the presence of VNC V. cholerae O1 in the estuarine and marine waters of the Río de la Plata and the Argentine shelf of the Atlantic Ocean, respectively. Employing immunofluorescence and PCR methods, we were able to detect reservoirs of V. cholerae O1 carrying the virulence-associated genes ctxA and tcpA. The VNC forms of V. cholerae O1 were identified in samples of water, phytoplankton, and zooplankton; the latter organisms were mainly the copepods Acartia tonsa, Diaptomus sp., Paracalanus crassirostris, and Paracalanus parvus. We found that under favorable conditions, the VNC form of V. cholerae can revert to the pathogenic, transmissible state. We concluded that V. cholerae O1 is a resident of Argentinean waters, as has been shown to be the case in other geographic regions of the world.  相似文献   

7.
The viable but nonculturable (VBNC) state is a survival mechanism adopted by many bacteria (including those of medical interest) when exposed to adverse environmental conditions. In this state bacteria lose the ability to grow in bacteriological media but maintain viability and pathogenicity and sometimes are able to revert to regular division upon restoration of normal growth conditions. The aim of this work was to analyze the biochemical composition of the cell wall of Enterococcus faecalis in the VBNC state in comparison with exponentially growing and stationary cells. VBNC enterococcal cells appeared as slightly elongated and were endowed with a wall more resistant to mechanical disruption than dividing cells. Analysis of the peptidoglycan chemical composition showed an increase in total cross-linking, which rose from 39% in growing cells to 48% in VBNC cells. This increase was detected in oligomers of a higher order than dimers, such as trimers (24% increase), tetramers (37% increase), pentamers (65% increase), and higher oligomers (95% increase). Changes were also observed in penicillin binding proteins (PBPs), the enzymes involved in the terminal stages of peptidoglycan assembly, with PBPs 5 and 1 being prevalent, and in autolytic enzymes, with a threefold increase in the activity of latent muramidase-1 in E. faecalis in the VBNC state. Accessory wall polymers such as teichoic acid and lipoteichoic acid proved unchanged and doubled in quantity, respectively, in VBNC cells in comparison to dividing cells. It is suggested that all these changes in the cell wall of VBNC enterococci are specific to this particular physiological state. This may provide indirect confirmation of the viability of these cells.  相似文献   

8.
细菌“活的不可培养状态”的生态意义及研究进展   总被引:1,自引:0,他引:1  
王秀娟  朱琳  陈中智  李宇 《微生物学通报》2008,35(12):1938-1942
"活的不可培养(VBNC)"状态是细菌在不良条件下的一种生存方式.VBNC状态作为细菌的一种生理状态,对传统微生物学产生了深远的影响.进入VBNC状态的细胞发生了一系列变化,无法继续用常规培养方法检测,在医学健康,环境科学等领域产生了巨大的影响,改进检测方法具有重要的意义.本文介绍了进入VBNC状态细菌在DNA、蛋白质组成等方面发生的变化,复苏过程.同时还介绍了VBNC状态的最新检测方法,最后对VBNC状态未来的研究方法进行了讨论.  相似文献   

9.
Chen H  Fu L  Luo L  Lu J  White WL  Hu Z 《Microbial ecology》2012,63(1):64-73
The viable but nonculturable (VBNC) state has been found to be a growth strategy used by many aquatic pathogens; however, few studies have focused on VBNC state on other aquatic bacterial groups. The purpose of this study was to explore the VBNC state of cyanobacteria-lysing bacteria and the conditions that regulate their VBNC state transformation. Three cyanobacteria-lysing heterotrophic bacterial strains (F1, F2 and F3) were isolated with liquid infection method from a lake that has experienced a cyanobacterial bloom. According to their morphological, physiological and biochemical characteristics and results of 16SrDNA sequence analysis, F1, F2 and F3 were identified as strains of Staphylococcus sp., Stappia sp. and Microbacterium sp., respectively. After being co-cultured with the axenic cyanobacterium, Microcystis aeruginosa 905, for 7 days, strains F1, F2 and F3 exhibited an inhibition effect on cyanobacterial growth, which was expressed as a reduction in chlorophyll concentration of 96.0%, 94.9% and 84.8%, respectively. Both autoclaved and filtered bacterial cultures still showed lytic effects on cyanobacterial cells while centrifuged pellets were less efficient than other fractions. This indicated that lytic factors were extracelluar and heat-resistant. The environmental conditions that could induce the VBNC state of strain F1 were also studied. Under low temperature (4°C), distilled deionized water (DDW) induced almost 100% of F1 cells to the VBNC state after 6 days while different salinities (1%, 3% and 5% of NaCl solution) and lake water required 18 days. A solution of the cyanobacterial toxin microcystin-LR (MC-LR) crude extract also induced F1 to the VBNC state, and the effect was stronger than DDW. Even the lowest MC-LR concentration (10 μg L−1) could induce 69.7% of F1 cells into VBNC state after 24 h. On the other hand, addition of Microcystis aeruginosa cells caused resuscitation of VBNC state F1 cells within 1 day, expressed as an increase of viable cell number and a decrease of VBNC ratio. Both VBNC state and culturable state F1 cells showed lytic effects on cyanobacteria, with their VBNC ratio varying during co-culturing with cyanobacteria. The findings indicated that VBNC state transformation of cyanobacteria-lysing bacteria could be regulated by cyanobacterial cells or their toxin, and the transformation may play an important role in cyanobacterial termination.  相似文献   

10.
The Viable But Non Culturable (VBNC) state has been thoroughly studied in bacteria. In contrast, it has received much less attention in other microorganisms. However, it has been suggested that various yeast species occurring in wine may enter in VBNC following sulfite stress.In order to provide conclusive evidences for the existence of a VBNC state in yeast, the ability of Saccharomyces cerevisiae to enter into a VBNC state by applying sulfite stress was investigated. Viable populations were monitored by flow cytometry while culturable populations were followed by plating on culture medium. Twenty-four hours after the application of the stress, the comparison between the culturable population and the viable population demonstrated the presence of viable cells that were non culturable. In addition, removal of the stress by increasing the pH of the medium at different time intervals into the VBNC state allowed the VBNC S. cerevisiae cells to “resuscitate”. The similarity between the cell cycle profiles of VBNC cells and cells exiting the VBNC state together with the generation rate of cells exiting VBNC state demonstrated the absence of cellular multiplication during the exit from the VBNC state. This provides evidence of a true VBNC state. To get further insight into the molecular mechanism pertaining to the VBNC state, we studied the involvement of the SSU1 gene, encoding a sulfite pump in S. cerevisiae. The physiological behavior of wild-type S. cerevisiae was compared to those of a recombinant strain overexpressing SSU1 and null Δssu1 mutant. Our results demonstrated that the SSU1 gene is only implicated in the first stages of sulfite resistance but not per se in the VBNC phenotype. Our study clearly demonstrated the existence of an SO2-induced VBNC state in S. cerevisiae and that the stress removal allows the “resuscitation” of VBNC cells during the VBNC state.  相似文献   

11.
Vibrio vulnificus is an estuarine bacterium capable of causing a rapidly fatal infection in humans. Because of the low nutrient levels and temperature fluctuations found in the organism’s natural habitat, the starvation state and viable but nonculturable (VBNC) state are of particular interest. A randomly amplified polymorphic DNA (RAPD) PCR protocol was developed previously for the detection of V. vulnificus strains grown in rich media and has been applied to starved and VBNC cells of V. vulnificus in the present study. As cells were subjected to starvation in artificial seawater, changes in the RAPD profile were detected as early as 15 min into the starvation period. Most noticeable was a uniform loss of RAPD amplification products. By 4 h of starvation, the cells were undetectable by the RAPD method. Cells that had been starved for up to 1 year again became detectable by the RAPD method when nutrients were added to the starvation microcosm. The same loss of signal, but at a lower rate, was also seen as cells entered the VBNC state. VBNC cells were resuscitated by a temperature upshift and were once again detectable by the RAPD method. The addition of chloramphenicol prevented the RAPD signal from being lost in both the starvation and VBNC states. This suggests that DNA binding proteins produced during starvation and entrance into the VBNC state may be responsible for the inability of the RAPD method to amplify V. vulnificus DNA in these states.  相似文献   

12.
To achieve functional bioluminescence, the developing light organ of newly hatched juveniles of the Hawaiian squid Euprymna scolopes must become colonized by luminous, symbiosis-competent Vibrio fischeri present in the ambient seawater. This benign infection occurs rapidly in animals placed in seawater from the host's natural habitat. Therefore, it was surprising that colony hybridization studies with a V. fischeri-specific luxA gene probe indicated the presence of only about 2 CFU of V. fischeri per ml of this infective seawater. To examine this paradox, we estimated the total concentration of V. fischeri cells present in seawater from the host's habitat in two additional ways. In the first approach, the total bacterial assemblage in samples of seawater was collected on polycarbonate membrane filters and used as a source of both a crude cell lysate and purified DNA. These preparations were then assayed by quantitative DNA-DNA hybridization with the luxA gene probe. The results suggested the presence of between 200 and 400 cells of V. fischeri per ml of natural seawater, a concentration more than 100 times that revealed by colony hybridization. In the second approach, we amplified V. fischeri-specific luxA sequences from microliter volumes of natural seawater by PCR. Most-probable-number analyses of the frequency of positive PCR results from cell lysates in these small volumes gave an estimate of the concentration of V. fischeri luxA gene targets of between 130 and 1,680 copies per ml. From these measurements, we conclude that in their natural seawater environment, the majority of V. fischeri cells become nonculturable while remaining viable and symbiotically infective. Experimental studies indicated that V. fischeri cells suspended in natural Hawaiian seawater enter such a state within a few days.  相似文献   

13.
Alkyl hydroperoxide reductase subunit C (AhpC) is the catalytic subunit responsible for the detoxification of reactive oxygen species that form in bacterial cells or are derived from the host; thus, AhpC facilitates the survival of pathogenic bacteria under environmental stresses or during infection. This study investigates the role of AhpC in the induction and maintenance of a viable but nonculturable (VBNC) state in Vibrio parahaemolyticus. In this investigation, ahpC1 (VPA1683) and ahpC2 (VP0580) were identified in chromosomes II and I of this pathogen, respectively. Mutants with deletions of these two ahpC genes and their complementary strains were constructed from the parent strain KX-V231. The growth of these strains was monitored on tryptic soy agar–3% NaCl in the presence of the extrinsic peroxides H2O2 and tert-butyl hydroperoxide (t-BOOH) at different incubation temperatures. The results revealed that both ahpC genes were protective against t-BOOH, while ahpC1 was protective against H2O2. The protective function of ahpC2 at 4°C was higher than that of ahpC1. The times required to induce the VBNC state (4.7 weeks) at 4°C in a modified Morita mineral salt solution with 0.5% NaCl and then to maintain the VBNC state (4.7 weeks) in an ahpC2 mutant and an ahpC1 ahpC2 double mutant were significantly shorter than those for the parent strain (for induction, 6.2 weeks; for maintenance, 7.8 weeks) and the ahpC1 mutant (for induction, 6.0 weeks; for maintenance, 8.0 weeks) (P < 0.03). Complementation with an ahpC2 gene reversed the effects of the ahpC2 mutation in shortening the times for induction and maintenance of the VBNC state. This investigation identified the different functions of the two ahpC genes and confirmed the particular role of ahpC2 in the VBNC state of V. parahaemolyticus.  相似文献   

14.
菌蜕系统(Bacterial Ghost,BG)的形成是利用噬菌体PhiX174的裂解蛋白E在革兰阴性菌细胞膜形成一个跨膜孔道结构,使细菌胞内物质由孔道排出而引起死亡。这种基因灭活的过程不引起细菌表面结构的任何理化变性,因此生成的细菌空壳具有与活菌相同功能的膜抗原结构,可诱导机体的体液免疫和细胞免疫应答。检测和比较了在铁调控启动子PyncE和温度调控启动子PR/cI控制下的E基因对迟钝爱德华氏菌菌蜕系统(EBG)的生成效率。结果显示,2种启动子均能成功生成EBG,电镜下可观察到细菌两端有直径约为80~400 nm的孔洞。传统菌蜕系统所用的热启动子在诱导后3 h开始裂解,8 h后细菌停止死亡;而新型铁诱导启动子在诱导后2 h细菌即完全停止生长。本研究为将来开发菌蜕载体疫苗防治爱德华氏菌症奠定了基础。  相似文献   

15.
Isolation of Edwardsiella tarda from Swine   总被引:3,自引:1,他引:2       下载免费PDF全文
Edwardsiella tarda was isolated from the intestinal tract of a 2-month-old pig. This is the first reported isolation of Edwardsiella tarda from swine in the United States. Swine have been reported as potential carriers of Edwardsiella tarda, but pathogenicity of this organism for swine has not been determined. Although the pig had access to several farm ponds, the exact source of infection was not determined.  相似文献   

16.
迟缓爱德华氏菌中甘油醛-3-磷酸脱氢酶的胞外分泌调控   总被引:1,自引:0,他引:1  
邓佳  吴海珍 《微生物学通报》2017,44(10):2398-2406
【目的】迟缓爱德华氏菌甘油醛-3-磷酸脱氢酶(GAPDH)是糖酵解途径中关键酶之一,前期研究证实是一种广谱性抗原,可作为水产养殖细菌病免疫防治中疫苗的开发靶点。本文探究迟缓爱德华氏菌甘油醛-3-磷酸脱氢酶的胞外分泌机制。【方法】通过Western blot和ELISA方法考察迟缓爱德华氏菌经典分泌系统缺失株GAPDH胞外分泌情况;使用ELISA方法对迟缓爱德华氏菌突变体文库的GAPDH胞外分泌进行了大规模筛查,并结合q RT-PCR对筛查得到的插入失活株进行了表达分析。【结果】经典分泌系统与GAPDH的胞外分泌存在一定相关性。突变体文库的大规模筛查得到两株GAPDH分泌量明显增加的插入失活株Δesr A和Δesr C,这两个基因的失活会导致GAPDH的胞外分泌量显著上调。【结论】迟缓爱德华氏菌GAPDH的胞外分泌受Esr A和Esr C负调控。  相似文献   

17.
Dissection of a type VI secretion system in Edwardsiella tarda   总被引:1,自引:0,他引:1  
Bacterial pathogens use different protein secretion systems to deliver virulence factors. Recently, a novel secretion system was discovered in several Gram-negative bacterial pathogens, and was designated as the type VI secretion system (T6SS). In Edwardsiella tarda, a partial E. tardavirulent protein (EVP) gene cluster was implicated in protein secretion. Here, we identified the entire EVP cluster as a T6SS and two additional secreted proteins (EvpI, a homologue of VgrG, and EvpP) were found. We systematically mutagenized all the 16 EVP genes and found that the secretion of EvpP was dependent on 13 EVP proteins including EvpC (a homologue of Hcp) and EvpI but not EvpD and EvpJ. All EVP mutants except DeltaevpD were attenuated in blue gourami fish. The 16 EVP proteins can be grouped according to their functions and cellular locations. The first group comprises 11 non-secreted and possibly intracellular apparatus proteins. Among them, EvpO, a putative ATPase which contained a Walker A motif, showed possible interactions with three EVP proteins (EvpA, EvpL and EvpN). The second group includes three secreted proteins (EvpC, EvpI and EvpP). The secretion of EvpC and EvpI is mutually dependent, and they are required for the secretion of EvpP. The interaction between EvpC and EvpP was demonstrated. Lastly, two proteins (EvpD and EvpJ) are not required for the T6SS-dependent secretion.  相似文献   

18.
19.
自然界中难分离培养微生物的分离和应用   总被引:7,自引:0,他引:7  
采用在分离培养基中添加自然来源的抽提液,或加入一些特殊化合物,使其中处于Viable but non-culturable(VBNC)状态的微生物恢复其生长繁殖能力,从而得到分离。实验结果发现甜菜碱、丙酮酸钠、SOD以及过氧化氢酶可使分离到的微生物种类及菌落总数明显增加。还采用固液结合的方法来分离那些在普通平板培养基上不能形成肉眼可见菌落的那些微小菌落的微生物。采用这几种方法从4份土壤样品中共分离得到52株放线菌,103株细菌,17株真菌。对其中的放线菌和真菌进行了生物活性的测定,得到多株具有抗菌活性的微生物,经过多次复筛的平均阳性率为4.325%,略高于用常规方法分离得到的微生物。因此证明有效的分离方法将为今后微生物药物的筛选和药用微生物菌种的保藏提供更丰富的来源。  相似文献   

20.
Salmonella enterica serovar Typhimurium DT104 11601was tested for its ability to maintain viability in minimal, chemically defined solutions. Periodic monitoring of growth and survival in microcosms of different ion concentrations, maintained at various temperatures, showed a gradual decline in culturable organisms (~235 days) at 5°C. Organisms maintained at a higher temperature (21°C) showed continuous, equivalent CFU per milliliter (~106) up to 400 days after inoculation. Fluorescence microscopy with Baclight revealed that nonculturable cells were actually viable, while observations with scanning electron microscopy showed that the cells had retained their structural integrity. Temperature upshift (56°C ± 0.5, 15 s) of the nonculturable organisms (5°C) in Trypticase soy broth followed by immediate inoculation onto Trypticase soy agar (TSA) gave evidence of resuscitation. Interestingly, S. enterica serovar Typhimurium DT104 from the microcosms at either 5°C (1 to 200 days) or 21°C (1 to 250 days) did not show enhanced growth after intermittent inoculation onto catalase-supplemented TSA. Furthermore, cells from 21°C microcosms exposed to oxidative and osmotic stress showed greater resistance to stresses over increasing times of exposure than did recently grown cells. It is possible that the exceptional survivability and resilience of this particular strain may in part reflect the growing importance of this multidrug-resistant organism, in general, as a cause of intestinal disease in humans. The fact that S. enterica serovar Typhimurium DT104 11601 is capable of modifying its physiological characteristics, including entry into and recovery from the viable but nonculturable state, suggests the overall possibility that S. enterica serovar Typhimurium DT104 may be able to respond uniquely to various adverse environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号