首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 145 microsatellite primer pairs from Prunus DNA sequences were studied for transferability in a set of eight cultivars from nine rosaceous species (almond, peach, apricot, Japanese plum, European plum, cherry, apple, pear, and strawberry), 25 each of almond genomic, peach genomic, peach expressed sequence tags (EST), and Japanese plum genomic, 22 of almond EST, and 23 of apricot (13 EST and 10 genomic), all known to produce single-locus and polymorphic simple-sequence repeats in the species where they were developed. Most primer pairs (83.6%) amplified bands of the expected size range in other Prunus. Transferability, i.e., the proportion of microsatellites that amplified and were polymorphic, was also high in Prunus (63.9%). Almond and Japanese plum were the most variable among the diploid species (all but the hexaploid European plum) and peach the least polymorphic. Thirty-one microsatellites amplified and were polymorphic in all Prunus species studied, 12 of which, covering its whole genome, are proposed as the “universal Prunus set”. In contrast, only 16.3% were transferable in species of other Rosaceae genera (apple, pear, and strawberry). Polymorphic Prunus microsatellites also detected lower levels of variability in the non-congeneric species. No significant differences were detected in transferability and the ability to detect variability between microsatellites of EST and genomic origin.  相似文献   

2.
Genic microsatellites or simple sequence repeat markers derived from expressed sequence tags (ESTs), referred to as EST–SSRs, are inexpensive to develop, represent transcribed genes, and often have assigned putative function. The large apple (Malus × domestica) EST database (over 300,000 sequences) provides a valuable resource for developing well-characterized DNA molecular markers. In this study, we have investigated the level of transferability of 68 apple EST–SSRs in 50 individual members of the Rosaceae family, representing three genera and 14 species. These representatives included pear (Pyrus communis), apricot (Prunus armeniaca), European plum (P. domestica), Japanese plum (P. salicina), almond (P. dulcis), peach (P. persica), sour cherry (P. cerasus), sweet cherry (P. avium), strawberry (Fragaria vesca, F. moschata, F. virginiana, F. nipponica, and F. pentaphylla), and rose (Rosa hybrida). All 68 primer pairs gave an amplification product when tested on eight apple cultivars, and for most, the genomic DNA-derived amplification product matched the expected size based on EST (in silico) data. When tested across members of the Rosaceae, 75% of these primer pairs produced amplification products. Transferability of apple EST–SSRs across the Rosaceae ranged from 25% in apricot to 59% in the closely related pear. Besides pear, the highest transferability of these apple EST–SSRs, at the genus level, was observed for strawberry and peach/almond, 49 and 38%, respectively. Three markers amplified in at least one genotype within all tested species, while eight additional markers amplified in all species, except for cherry. These 11 markers are deemed good candidates for a widely transferable Rosaceae marker set provided their level of polymorphism is adequate. Overall, these findings suggest that transferability of apple EST–SSRs across Rosaceae is varied, yet valuable, thereby providing additional markers for comparative mapping and for carrying out evolutionary studies.  相似文献   

3.
Host preference of the plum curculio   总被引:1,自引:0,他引:1  
We assessed host preference of adult plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), based on the total number of mark‐released and wild adults recovered and the total distance moved by mark‐released adults in an orchard whose layout was designed to specifically allow foraging plum curculios to choose among host tree species. Host trees included apple, Malus domestica Borkh.; pear, Pyrus communis (L.); peach, Prunus persica (L.) Batsch; apricot, Prunus armeniaca L.; tart cherry, Prunus cerasus L.; sweet cherry, Prunus avium (L.); European plum, Prunus domestica L.; and Japanese plum, Prunus salicina Lindl. (all Rosaceae). We released 2900 marked adults and recovered 17.7%. We used screen traps to provide a measure of the number of adults that arrived at and climbed up particular host trees and found that significantly greater numbers of marked adults and the greatest number of wild adults were recovered from screen traps attached to Japanese plum. We sampled host tree canopies by tapping limbs to provide a measure of the number of adults within a tree canopy at a particular moment. Again, significantly greater numbers of marked and wild adults were recovered from plum species, with no difference between Japanese and European plum cultivars for marked individuals, but with significantly greater numbers of wild individuals recovered from Japanese plum. The preference index (PI) for Japanese plum based on total distances moved by all marked adults recovered on Japanese plum divided by the total distance moved by marked adults recovered on other host trees indicated that Japanese plum was the most highly preferred host, followed by European plum, peach, sweet cherry, tart cherry, apricot, apple, and pear, respectively.  相似文献   

4.
We have isolated 44 SSRs from an AC‐enriched genomic library from almond (Prunus amygdalus Batsch.). Twenty SSRs were screened for their polymorphism in 16 cultivars and for their transportability in seven different Prunus species (peach, nectarine, apricot, European plum, Japanese plum, sweet cherry, sour cherry) and in apple. The expected heterozygosity ranged from 0.62 to 0.89. About 30% of primers gave successful amplification in seven different Prunus species; in two cases amplifications were obtained also in apple.  相似文献   

5.
We report the sequence of 41 primer pairs of microsatellites from a CT-enriched genomic library of the peach cultivar 'Merrill O'Henry'. Ten microsatellite-containing clones had sequences similar to plant coding sequences in databases and could be used as markers for known functions. For microsatellites segregating at least in one of the two Prunus F(2) progenies analyzed, it was possible to demonstrate Mendelian inheritance. Microsatellite polymorphism was evaluated in 27 peach and 21 sweet cherry cultivars. All primer pairs gave PCR-amplification products on peach and 33 on cherry (80.5%). Six PCR-amplifications revealed several loci (14.6%) in peach and eight (19.5%) in sweet cherry. Among the 33 single-locus microsatellites amplified in peach and sweet cherry, 13 revealed polymorphism both in peach and cherry, 19 were polymorphic only on peach and one was polymorphic only on cherry. The number of alleles per locus ranged from 1 to 9 for peach and from 1 to 6 on sweet cherry with an average of 4.2 and 2.8 in peach and sweet cherry, respectively. Cross-species amplification was tested within the Prunus species: Prunus avium L. (sweet cherry and mazzard), Prunus cerasus L. (sour cherry), Prunus domestica L. (European plum), Prunus amygdalus Batsch. (almond), Prunus armeniaca L. (apricot), Prunus cerasifera Ehrh. (Myrobalan plum). Plants from other genera of the Rosaceae were also tested: Malus (apple) and Fragaria (strawberry), as well as species not belonging to the Rosaceae: Castanea (chestnut tree), Juglans (walnut tree) and Vitis (grapevine). Six microsatellites gave amplification on all the tested species. Among them, one had an amplified region homologous to sequences encoding a MADS-box protein in Malus x domestica. Twelve microsatellites (29.3%) were amplified in all the Rosaceae species tested and 31 (75.6%) were amplified in all the six Prunus species tested. Thirty three (80.5%), 18 (43.9%) and 13 (31.7%) gave amplification on chestnut tree, grapevine and walnut tree, respectively.  相似文献   

6.
A set of 120 simple sequence repeats (SSRs) was developed from the newly assembled pear sequence and evaluated for polymorphisms in seven genotypes of pear from different genetic backgrounds. Of these, 67 (55.8 %) primer pairs produced polymorphic amplifications. Together, the 67 SSRs detected 277 alleles with an average of 4.13 per locus. Sequencing of the amplification products from randomly picked loci NAUPy31a and NAUpy53a verified the presence of the SSR loci. When the 67 primer pairs were tested on 96 individual members of eight species in the Rosaceae family, 61.2 % (41/67) of the tested SSRs successfully amplified a PCR product in at least one of the Rosaceae genera. The transferability from pear to different species varied from 58.2 % (apple) to 11.9 % (cherry). The ratio of transferability also reflected the closer relationships within Maloideae over Prunoideae. Two pear SSR markers, NAUpy43c and NAUpy55k, could distinguish the 20 different apple genotypes thoroughly, and UPGMA cluster analysis grouped them into three groups at the similarity level of 0.56. The high level of polymorphism and good transferability of pear SSRs to Rosaceae species indicate their promise for application to future molecular screening, map construction, and comparative genomic studies among pears and other Rosaceae species.  相似文献   

7.
不同寄主植物对山楂叶螨生长发育和繁殖的影响   总被引:12,自引:3,他引:9  
李定旭  侯月利  沈佐锐 《生态学报》2005,25(7):1562-1569
室内采用叶碟饲养的方法研究了苹果、桃、李、樱桃和杏等不同果树对山楂叶螨Tetrancychusvienensis生长发育和繁殖的影响。结果表明,在李树上山楂叶螨的发育历期短、生殖力强、存活率高,rm值大,而在樱桃和杏树上该螨的发育历期长、生殖力弱、存活率低、rm值小。寄主转换试验结果表明,当山楂叶螨由苹果转移至樱桃和杏树时,其生长发育的历期显著延长,rm值大幅度降低;而由苹果转移至桃树和李树时,其生长发育的历期虽也有所延长,但差异不显著,rm值则明显降低。表明山楂叶螨对新寄主的适应因不同寄主而异,在桃和李上经历1代后即可适应,而在杏和樱桃上经历2代后才能适应新的寄主。  相似文献   

8.
We report 99 simple sequence repeats (SSRs) newly isolated from an apricot (Prunus armeniaca L.) genomic library enriched for AG/CT repeats. Twenty SSRs were screened for their polymorphism in 16 apricot cultivars. The number of alleles ranged from two to nine, whereas the expected heterozygosity (HE) ranged from 0.26 to 0.82. The same SSRs showed also an appreciable transportability across different Prunus species, such as peach, nectarine, almond, European plum, Japanese plum, sweet cherry and sour cherry, with 20% of primers giving successful amplifications in all Prunus species assayed. None gave amplification in apple.  相似文献   

9.
苹掌舟蛾药效实验的统计分析   总被引:1,自引:0,他引:1  
苹掌舟蛾(Phalera flavescens Bremer et Grey)为北方苹果、南方枇杷和梨、桃、李、杏、梅、樱桃、山楂等果树的重要害虫,常致枇杷及光叶石楠受害成灾。本用统计的方法分析了采用农药和病毒防治苹掌舟蛾幼虫的效果。  相似文献   

10.
The pits and nuts of almond, Persian walnut, pecan, filbert, tung, apricot, prune, peach, cherry and plum; the fruit pulp of avocado and olive; and the seeds of citrus fruits, grape, apple, pear, cranberry and numerous other domestically cultivated plants are sources of valuable oils already in use.  相似文献   

11.
Twenty‐one expressed sequence tag–simple sequence repeat (EST–SSR) markers were developed in peach from a mesocarp cDNA library. Eighteen of them gave successful amplification in 22 peach genotypes and produced one to three alleles each with an average of 1.8 alleles per locus. The average value of expected and observed heterozygosities was 0.24 and 0.20, respectively. All the primers gave successful amplification in other six Prunus species (almond, apricot, sweet cherry, Japanese plum, European plum and Prunus ferganensis).  相似文献   

12.

Background  

Peach is being developed as a model organism for Rosaceae, an economically important family that includes fruits and ornamental plants such as apple, pear, strawberry, cherry, almond and rose. The genomics and genetics data of peach can play a significant role in the gene discovery and the genetic understanding of related species. The effective utilization of these peach resources, however, requires the development of an integrated and centralized database with associated analysis tools.  相似文献   

13.
为了准确掌握梨小食心虫的产卵特性,研究模拟室外条件下该虫在不同寄主果树的叶片、桃枝不同部位及不同品种桃果上的产卵偏好.结果表明: 梨小食心虫成虫对7种寄主果树叶片的产卵偏好由高至低依次为:桃>樱桃>苹果>李>梨>海棠>杏.在桃树叶片上的产卵量占总产卵量的33.5%,平均单叶卵量达8.3粒;虫卵在不同寄主叶片正、反两面的分布有所差异,苹果和海棠叶片正面卵量多于背面,桃、李、梨、杏叶背面卵量多于正面,桃叶背面卵量是正面的3.3倍,樱桃叶两面卵量差异不明显;该虫在桃枝上产卵部位选择顺序为:叶片>托叶>叶柄>枝条,叶片是其主要产卵部位,占总产卵量的88.7%;梨小食心虫在桃枝上主要选择靠近顶端未展叶的前10片桃叶背面产卵,前10叶卵量占总产卵量的725%,其中第3片叶上产卵最多,占9.3%;第25叶以后仅占总产卵量的1.1%;在不同类型桃果上的产卵偏好次序为:油桃>蟠桃>毛桃;绒毛疏密及其特点是影响梨小食心虫在寄主果树叶片和果实上产卵选择的首要因素.  相似文献   

14.
为了准确掌握梨小食心虫的产卵特性,研究模拟室外条件下该虫在不同寄主果树的叶片、桃枝不同部位及不同品种桃果上的产卵偏好.结果表明: 梨小食心虫成虫对7种寄主果树叶片的产卵偏好由高至低依次为:桃>樱桃>苹果>李>梨>海棠>杏.在桃树叶片上的产卵量占总产卵量的33.5%,平均单叶卵量达8.3粒;虫卵在不同寄主叶片正、反两面的分布有所差异,苹果和海棠叶片正面卵量多于背面,桃、李、梨、杏叶背面卵量多于正面,桃叶背面卵量是正面的3.3倍,樱桃叶两面卵量差异不明显;该虫在桃枝上产卵部位选择顺序为:叶片>托叶>叶柄>枝条,叶片是其主要产卵部位,占总产卵量的88.7%;梨小食心虫在桃枝上主要选择靠近顶端未展叶的前10片桃叶背面产卵,前10叶卵量占总产卵量的725%,其中第3片叶上产卵最多,占9.3%;第25叶以后仅占总产卵量的1.1%;在不同类型桃果上的产卵偏好次序为:油桃>蟠桃>毛桃;绒毛疏密及其特点是影响梨小食心虫在寄主果树叶片和果实上产卵选择的首要因素.  相似文献   

15.
An antibody raised against apple polyphenol oxidase (PPO) cross-reacted with PPOs from Japanese pear (Pyrus pyrifolia), pear (Pyrus communis), peach (Prunus persica), Chinese quince (Pseudocydonia sinensis) and Japanese loquat (Eriobotrya japonica). Core fragments (681 bp) of the corresponding PPO genes were amplified and characterized. The deduced protein sequences showed identities of 85.3 to 97.5%. Chlorogenic acid oxidase activity of these PPOs showed higher activities when assayed at pH 4 than at pH 6. These results indicate that PPOs in Rosaceae plants are structurally and enzymatically similar.  相似文献   

16.
Self-incompatibility is an important genetic mechanism that prevents inbreeding and promotes genetic polymorphism and heterosis in flowering plants. Many fruit species in the Rosaceae, including apple, pear, plum, apricot, sweet cherry, Japanese apricot, and almond, exhibit typical gametophytic self-incompatibility (GSI) controlled by an apparently single multi-allelic locus. This locus encodes at least two components from both the pollen and the pistil, and controls recognition of self- and non-self pollen. Recently, the GSI system has been investigated at the molecular and cellular levels in Rosaceae, and findings have provided some important insights as to how these two genes interact within pollen tubes that lead to specific inhibition of germination and/or growth of self-pollen tubes. In this review, molecular features of S-determinants of both pistil and pollen, identification of S-alleles, mechanisms of self-incompatibility break-down, and evolution of S-alleles are presented. Moreover, hypothetical signal transduction models in a self-incompatible system in Rosaceae are proposed based on recent findings that indicate that several signal factors are involved in GSI responses.  相似文献   

17.
We constructed a high-density genetic linkage map of bronze loquat (Eriobotrya deflexa) by using a three-way cross of loquat (Eriobotrya japonica) × (loquat × bronze loquat) and simple sequence repeat (SSR) and random amplified polymorphic DNA (RAPD) markers. The positions of the SSR loci used in this study were previously identified on reference maps of pears (Pyrus spp.) and apples (Malus spp.). The map of bronze loquat (‘Taiwan loquat No. 1’) consisted of 308 loci including 167 SSRs (8 loquat, 57 pear, and 102 apple SSRs), 140 RAPDs, and the loquat canker resistance gene Pse-a on 19 linkage groups covering a genetic distance of 1036 cM. Almost all loquat linkage groups were aligned to the pear consensus map by using at least two pear or apple SSRs, suggesting that positions and linkages of SSR loci were well conserved between loquat and pear and between loquat and apple. The constructed map may be used to determine the location of genes and quantitative trait loci of interest and to analyze genome synteny in the tribe Pyreae, subfamily Spiraeoideae of the family Rosaceae.  相似文献   

18.
Four IgE-binding epitopes have been characterized that cover a large area (40%) of the molecular surface of lipid transfer protein allergens of Rosaceae (apple, peach, apricot, and plum). They mainly correspond to electropositively charged regions protruding on the molecular surface of the modeled apple (Mal d 3), apricot (Pru ar 3), and plum (Pru d 3) allergens. Two of these epitopes consist of consensus epitopes structurally conserved among the lipid transfer protein allergens from the Rosaceae. Their occurrence in different lipid transfer protein allergens presumably accounts for the IgE-binding cross-reactivity often observed among different Rosaceae fruits. In this respect, LTP consist of phylogenetically- and structurally-related pan allergens. However, the IgE-binding cross-reactivity due to fruit lipid transfer protein has varying degrees of clinical relevance and this cross-reactivity is not necessarily accompanied by a cross-allergenicity to the corresponding fruits.  相似文献   

19.
Genetic linkage maps of the European pear ( Pyrus communis L.) cultivar 'Bartlett' and the Japanese pear ( Pyrus pyrifolia Nakai) cultivar 'Housui' were constructed based on AFLPs, SSRs from pear, apple and Prunus, isozymes and phenotypic traits by using their F(1) progenies. The map of the female parent Bartlett consisted of 226 loci including 175 AFLPs, 49 SSRs, one isozyme and one S locus on 18 linkage groups over a total length of 949 cM, while that for 'Housui' contained 154 loci including 106 AFLPs, 42 SSRs, two phenotypic traits and the other four markers on 17 linkage groups encompassing a genetic distance of 926 cM. These maps were partially aligned using 20 codominant markers which showed segregating alleles in both parents. Compared with the reports of apple genetic maps, these pear maps were not saturated but were near saturation. Distorted segregation was observed in two and one regions of the genome of Bartlett and Housui, respectively. The position of 14 SSRs originating from apple could be successfully determined in pear maps, which enabled us to compare the two maps. Some SSRs developed from Prunus (peach, cherry) were also mapped. The relationships between pear and the other species belonging to the Rosaceae were discussed based on the position of SSRs.  相似文献   

20.
A survey of bacterial diseases due to Pseudomonas on rosaceous fruit trees was conducted. In forty two orchards located in the Constantine region ( East Algeria). Pseudomonas isolates were identified on the bases of their cultural and biochemical characteristics . A total of fifty nine phytopathogenic bacteria were isolated from diseased pome and stone fruit trees. Thirty one strains comparable to Pseudomonas syringae pv. syringae were isolated from cherry (Prunus avium L.), plum (P. domestica L.), apricot (P. armeniaca L.), almond (P. dulcis L.) and pear trees (Pirus communis L.); sixteen strains comparable to Pseudomonas syringae pv. morsprunorum were obtained from samples of cherry and plum. Twelve strains of Pseudomonas viridiflava were isolated from cherry, apricot and peach (Prunus persica L.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号