首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild‐type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na+ accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na+/H+ exchange activity and Na+ efflux in transgenic plants were significantly higher than those in the wild‐type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt‐tolerant trees.  相似文献   

3.
4.
The calcineurin B‐like protein (CBL) family represents a unique group of calcium sensors in plants. In Arabidopsis, CBL10 functions as a shoot‐specific regulator in salt tolerance. We have identified two CBL10 homologs, PtCBL10A and PtCBL10B, from the poplar (Populus trichocarpa) genome. While PtCBL10A was ubiquitously expressed at low levels, PtCBL10B was preferentially expressed in the green‐aerial tissues of poplar. Both PtCBL10A and PtCBL10B were targeted to the tonoplast and expression of either one in the Arabidopsis cbl10 mutant could rescue its shoot salt‐sensitive phenotype. Like PtSOS3, both PtCBL10s physically interacted with the salt‐tolerance component PtSOS2. But in contrast to the SOS3‐SOS2 complex at the plasma membrane, the PtCBL10‐SOS2 interaction was primarily associated with vacuolar compartments. Furthermore, overexpression of either PtCBL10A or PtCBL10B conferred salt tolerance on transgenic poplar plants by maintaining ion homeostasis in shoot tissues under salinity stress. These results not only suggest a crucial role of PtCBL10s in shoot responses to salt toxicity in poplar, but also provide a molecular basis for genetic engineering of salt‐tolerant tree species.  相似文献   

5.
6.
The CCCH type zinc finger proteins are a super family involved in many aspects of plant growth and development. In this study, we investigated the response of one CCCH type zinc finger protein AtZFP1 (At2g25900) to salt stress in Arabidopsis. The expression of AtZFP1 was upregulated by salt stress. Compared to transgenic strains, the germination rate, emerging rate of cotyledons and root length of wild plants were significantly lower under NaCl treatments, while the inhibitory effect was significantly severe in T-DNA insertion mutant strains. At germination stage, it was mainly osmotic stress when treated with NaCl. Relative to wild plants, overexpression strains maintained a higher K+, K+/Na+, chlorophyll and proline content, and lower Na+ and MDA content. Quantitative real-time PCR analysis revealed that the expression of stress related marker genes KIN1, RD29B and RD22 increased more significantly in transgenic strains by salt stress. Overexpression of AtZFP1 also enhanced oxidative and osmotic stress tolerance which was determined by measuring the expression of a set of antioxidant genes, osmotic stress genes and ion transport protein genes such as SOS1, AtP5CS1 and AtGSTU5. Overall, our results suggest that overexpression of AtZFP1 enhanced salt tolerance by maintaining ionic balance and limiting oxidative and osmotic stress.  相似文献   

7.
The Arabidopsis thaliana late embryogenesis abundant gene AtEm6 is required for normal seed development and for buffering the rate of dehydration during the latter stages of seed maturation. However, its function in salt stress tolerance is not fully understood. In this investigation, cell suspension cultures of three plant species rice (Oryza sativa L.), cotton (Gossypium hirsutum L.), and white pine (Pinus strobes L.) were transformed using Agrobacterium tumefaciens strain LBA4404 harboring pBI-AtEm6. Integration of the AtEm6 gene into the genome of rice, cotton, and white pine has been confirmed by polymerase chain reaction, Southern blotting, and northern blotting analyses. Three transgenic cell lines from each of O. sativa, G. hirsutum, and P. strobus were used to analyze salt stress tolerance conferred by the overexpression of the AtEm6 gene. Our results demonstrated that expression of the AtEm6 gene enhanced salt tolerance in transgenic cell lines. A decrease in lipid peroxidation and an increment in antioxidant enzymes ascorbate peroxidase, glutathione reductase and superoxide dismutase activities were observed in the transgenic cell lines, compared to the non- transgenic control. In rice, AtEM6 increased expression of Ca2+-dependent protein kinase genes OsCPK6, OsCPK9, OsCPK10, OsCPK19, OsCPK25, and OsCPK26 under treatment of salt. These results suggested that overexpression of the AtEM6 gene in transgenic cell lines improved salt stress tolerance by regulating expression of Ca2+-dependent protein kinase genes. Overexpression of the AtEM6 gene could be an alternative choice for engineering plant abiotic stress tolerance.  相似文献   

8.
9.
10.
Genes in the FLOWERING LOCUS T (FT) family have been shown to be important in the control of the switch between vegetative and reproductive growth in several plant species. In this study, two FT orthologs were isolated from Populus simonii, a species indigenous to China and planted in North China as a shelterbelt. The orthologs were named PsFT1 and PsFT2. Phylogenetic analysis revealed that the two genes belonged to the FT gene family. PsFT1 and PsFT2 control flowering initiation in response to day-length when ectopically expressed in transgenic Arabidopsis and transgenic juvenile poplar clone T89 plants. Moreover, when poplar T89 was transformed with PsFT1 or PsFT2, flowering was induced within 40 days. Subsequently, floral meristems emerged on the flanks of the axillary inflorescence shoots. These findings suggest that PsFT1 and PsFT2 are involved in the control of the timing of flowering in Populus simonii.  相似文献   

11.
12.
13.
Calreticulin (CRT) is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum) remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants.  相似文献   

14.
15.
16.
Ubiquitination is an important post-translational protein modification that is known to play critical roles in diverse biological processes in eukaryotes. The RING E3 ligases function in ubiquitination pathways, and are involved in a large diversity of physiological processes in higher plants. The RING domain-containing E3 ligase AtRDUF1 was previously identified as a positive regulator of ABA-mediated dehydration stress response in Arabidopsis. In this study, we report that AtRDUF1 is involved in plant responses to salt stress. AtRDUF1 expression is upregulated by salt treatment. Overexpression of AtRDUF1 in Arabidopsis results in an insensitivity to salt and osmotic stresses during germination and seedling growth. A double knock-out mutant of AtRDUF1 and its close homolog AtRDUF2 (atrduf1atrduf2) was hypersensitive to salt treatment. The expression levels of the stress-response genes RD29B, RD22, and KIN1 are more sensitive to salt treatment in AtRDUF1 overexpression plants. In summary, our data show that AtRDUF1 positively regulates responses to salt stress in Arabidopsis.  相似文献   

17.
18.
J Long  M Li  Q Ren  C Zhang  J Fan  Y Duan  J Chen  B Li  L Deng 《Gene》2012,493(1):36-43
Glutamate receptor-like genes (GLRs) are intimately associated with plant development, defence responses and signalling pathways. Structural and expression analyses of SlGLRs were performed to better characterise their roles in fruit development and metabolism. Utilising recently released tomato genomic sequence data, 15 GLRs were identified in the tomato genome (SlGLRs). Thirteen of these genes were represented by full-length sequences. Phylogenetic analysis of the SlGLRs and the AtGLRs indicates the occurrence of a tomato-specific clade (Clade I) that may have diverged prior to the evolving of other clades. Among the Clade II genes, five (SlGLR2.1, SlGLR2.2, SlGLR2.3, SlGLR2.4, and SlGLR2.5) were located proximally on chromosome 6, indicating possible gene duplication events. The expression level of four of these genes was low in all analysed samples. However, SlGLR2.2 expression level was notably higher, indicating that this gene may be functionally important. The results of this study may provide clues to the functions of the SlGLRs and enable future detailed characterisations of each gene.  相似文献   

19.
Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS) in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.  相似文献   

20.
Glutathione S-transferases (GSTs) are multifunctional proteins and play a role in detoxification of xenobiotics as well as prevention of oxidative damage. This study exogenously overexpressed PtGSTF4 from Populus trichocarpa and its two orthologs from Populus yatungensis and Populus euphratica in Arabidopsis thaliana, respectively. To elucidate the function of three GSTF4 proteins in stress response, we compared germination and seedling growth in transgenic Arabidopsis with salt and drought treatments. All three Populus GSTF4 genes overexpressed Arabidopsis showed enhanced resistance to salt stress and drought. GSTF4 transgenic plants accumulated less hydrogen peroxide and more chlorophylls and decreased levels of lipid peroxidation under salt stress and drought comparing to the mock control plants. The difference observed by GSH and GSSG measurements indicated GSTF4 proteins may involve in glutathione-dependent peroxide scavenging which lead to reduced oxidative damage. The Arabidopsis transformed with the GSTF4 gene form P. euphratica showed higher germination rate and different performance of affecting GSSG contents comparing with the other two orthologous GST genes under NaCl treatment. These results suggested three Populus GSTF4 orthologs may have functional divergence in stress responding. This study provides insights into molecular mechanisms that underlie salt and drought stress tolerance of Phi GSTs and gives evidence for the functional divergence among orthologs in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号