共查询到20条相似文献,搜索用时 15 毫秒
1.
Alanine Substitutions of Polar and Nonpolar Residues in the Amino-Terminal Domain of CCR5 Differently Impair Entry of Macrophage- and Dualtropic Isolates of Human Immunodeficiency Virus Type 1 总被引:2,自引:2,他引:2 下载免费PDF全文
Gwnaël E. E. Rabut Jason A. Konner Francis Kajumo John P. Moore Tatjana Dragic 《Journal of virology》1998,72(4):3464-3468
Multiple extracellular domains of the CC-chemokine receptor CCR5 are important for its function as a human immunodeficiency virus type 1 (HIV-1) coreceptor. We have recently demonstrated by alanine scanning mutagenesis that the negatively charged residues in the CCR5 amino-terminal domain are essential for gp120 binding and coreceptor function. We have now extended our analysis of this domain to include most polar and nonpolar amino acids. Replacement of alanine with all four tyrosine residues and with serine-17 and cysteine-20 decrease or abolish gp120 binding and CCR5 coreceptor activity. Tyrosine-15 is essential for viral entry irrespective of the test isolate. Substitutions at some of the other positions impair the entry of dualtropic HIV-1 isolates more than that of macrophagetropic ones. 相似文献
2.
3.
Adaptive Mutations in the V3 Loop of gp120 Enhance Fusogenicity of Human Immunodeficiency Virus Type 1 and Enable Use of a CCR5 Coreceptor That Lacks the Amino-Terminal Sulfated Region 总被引:4,自引:0,他引:4 下载免费PDF全文
Emily J. Platt Shawn E. Kuhmann Patrick P. Rose David Kabat 《Journal of virology》2001,75(24):12266-12278
To identify sites in gp120 that interact with the CCR5 coreceptor and to analyze the mechanisms of infection, we selected variants of the CCR5-dependent JRCSF molecular clone of human immunodeficiency virus type 1 (HIV-1) that adapted to replicate in HeLa-CD4 cells that express the mutant coreceptor CCR5(Y14N) or CCR5(G163R), which were previously shown to bind purified gp120-CD4 complexes only weakly. Correspondingly, these mutant CCR5s mediate infections of wild-type virus only at relatively high cell surface concentrations, demonstrating a concentration-dependent assembly requirement for infection. The plots of viral infectivity versus concentration of coreceptors had sigmoidal shapes, implying involvement of multiple coreceptors, with an estimated stoichiometry of four to six CCR5s in the active complexes. All of the adapted viruses had mutations in the V3 loops of their gp120s. The titers of recombinant HIV-1 virions with these V3 mutations were determined in previously described panels of HeLa-CD4 cell clones that express discrete amounts of CCR5(Y14N) or CCR5(G163R). The V3 loop mutations did not alter viral utilization of wild-type CCR5, but they specifically enhanced utilization of the mutant CCR5s by two distinct mechanisms. Several mutant envelope glycoproteins were highly fusogenic in syncytium assays, and these all increased the efficiency of infection of the CCR5(Y14N) or CCR5(G163R) clonal panels without enhancing virus adsorption onto the cells or viral affinity for the coreceptor. In contrast, V3 loop mutation N300Y was selected during virus replication in cells that contained only a trace of CCR5(Y14N) and this mutation increased the apparent affinity of the virus for this coreceptor, as indicated by a shift in the sigmoid-shaped infectivity curve toward lower concentrations. Surprisingly, N300Y increased viral affinity for the second extracellular loop of CCR5(Y14N) rather than for the mutated amino terminus. Indeed, the resulting virus was able to use a mutant CCR5 that lacks 16 amino acids at its amino terminus, a region previously considered essential for CCR5 coreceptor function. Our results demonstrate that the role of CCR5 in infection involves at least two steps that can be strongly and differentially altered by mutations in either CCR5 or the V3 loop of gp120: a concentration-dependent binding step that assembles a critical multivalent virus-coreceptor complex and a postassembly step that likely involves a structural rearrangement of the complex. The postassembly step can severely limit HIV-1 infections and is not an automatic consequence of virus-coreceptor binding, as was previously assumed. These results have important implications for our understanding of the mechanism of HIV-1 infection and the factors that may select for fusogenic gp120 variants during AIDS progression. 相似文献
4.
CCR5-Mediated Human Immunodeficiency Virus Entry Depends on an Amino-Terminal gp120-Binding Site and on the Conformational Integrity of All Four Extracellular Domains 下载免费PDF全文
Stphane Genoud Francis Kajumo Yong Guo Daniah Thompson Tatjana Dragic 《Journal of virology》1999,73(2):1645-1648
The human immunodeficiency virus type 1 coreceptor activity of CCR5 depends on certain polar and charged residues in its amino-terminal domain. Since studies of chimeric receptors have indicated that the extracellular loops of CCR5 are also involved in viral fusion and entry, we have explored the role of bulky, polar and nonpolar residues in these regions. Selected amino acids in the three extracellular loops were individually changed to alanines, and the coreceptor activities of the mutant CCR5 proteins were tested in a luciferase reporter virus-based entry assay. We found that the cysteines in the extracellular loops of CCR5 are essential for coreceptor activity. However, only minor (two- to threefold) effects on coreceptor function were noted for all of the other alanine substitutions. We also demonstrated that when the first 19 residues of the amino-terminal region were separated from the rest of CCR5, by insertion of glycine/serine spacers between proline 19 and cysteine 20, coreceptor function decreased. Together with our previous studies, these data indicate that both an amino-terminal gp120-binding site and extracellular domain geometry play a role in viral entry. 相似文献
5.
A Tyrosine-Rich Region in the N Terminus of CCR5 Is Important for Human Immunodeficiency Virus Type 1 Entry and Mediates an Association between gp120 and CCR5 总被引:4,自引:4,他引:4 下载免费PDF全文
Michael Farzan Hyeryun Choe Luis Vaca Kathleen Martin Ying Sun Elizabeth Desjardins Nancy Ruffing Lijun Wu Richard Wyatt Norma Gerard Craig Gerard Joseph Sodroski 《Journal of virology》1998,72(2):1160-1164
Human immunodeficiency virus type 1 (HIV-1) requires the presence of specific chemokine receptors in addition to CD4 to enter target cells. The chemokine receptor CCR5 is used by the macrophage-tropic strains of HIV-1 that predominate during the asymptomatic stages of infection. Here we identify a small tyrosine-rich region of CCR5 proximal to the N-terminal cysteine that is critical for entry of macrophage-tropic and dual-tropic variants of HIV-1. HIV-1 infection of cells expressing CCR5 mutants with changes in this region was substantially reduced compared with the infection of cells bearing wild-type CCR5. Simian immunodeficiency virus (SIVmac239) entry was also ablated on a subset of these mutants but enhanced on others. These differences in virus entry were correlated with the relative ability of soluble, monomeric HIV-1 and SIVmac239 gp120 glycoproteins to bind the CCR5 mutants. These results identify a region of CCR5 that is necessary for the physical association of the gp120 envelope glycoprotein with CCR5 and for HIV-1 infection. 相似文献
6.
Analysis of the Critical Domain in the V3 Loop of Human Immunodeficiency Virus Type 1 gp120 Involved in CCR5 Utilization 下载免费PDF全文
Human immunodeficiency virus type 1 (HIV-1) infection of CD4(+) lymphocytes and macrophages involves interaction of the surface subunit of the envelope protein (gp120) with coreceptors. Isolates have been found with specific tropism for macrophages and/or T-cell lines, through the utilization of chemokine receptor CCR5 (R5) or CXCR4 (X4). The third hypervariable loop (V3 loop) of gp120 is the major determinant of tropism. Using chimeric envelopes between HXB2 (X4) and ADA (R5), we found that the C-terminal half of the V3 loop was sufficient to confer on HXB2 the ability to infect CCR5-expressing cells. A sequence motif was identified at positions 289 to 292 allowing 30% of wild-type levels of infection, whereas full activity was achieved with the conversion of Lys to Glu at position 287 in addition to the above motif. Moreover, V3 loops from either SF2 (X4R5) or SF162 (R5) also allowed infection of CCR5-expressing cells, supporting the importance of V3 loops in influencing CCR5 utilization. The effects of amino acid changes at position 287 on the level of infection via CCR5 showed that negatively charged residues (Glu and Asp) were optimal for efficient interaction whereas only bulky hydrophobic residues drastically reduced infection. In addition, sequences at the N terminus of the V3 loop independently modulated the level of infection via CCR5. This study also examined the susceptibility of chimeric envelopes to neutralization by anticoreceptor antibodies and suggested the presence of differential interaction between the chimeric envelopes and CCR5. These findings highlight the critical residues in the V3 loop that mediate HIV-1 infection. 相似文献
7.
CD4-Induced Conformational Changes in the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein: Consequences for Virus Entry and Neutralization 总被引:2,自引:18,他引:2 下载免费PDF全文
Nancy Sullivan Ying Sun Quentin Sattentau Markus Thali Dona Wu Galina Denisova Jonathan Gershoni James Robinson John Moore Joseph Sodroski 《Journal of virology》1998,72(6):4694-4703
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response. 相似文献
8.
Continued Utilization of CCR5 Coreceptor by a Newly Derived T-Cell Line-Adapted Isolate of Human Immunodeficiency Virus Type 1 下载免费PDF全文
Kathryn E. Follis Meg Trahey Rachel A. LaCasse Jack H. Nunberg 《Journal of virology》1998,72(9):7603-7608
The differential use of CC chemokine receptor 5 (CCR5) and CXC chemokine receptor 4 (CXCR4) may be intimately involved in the transmission and progression of human immunodeficiency virus infection. Changes in coreceptor utilization have also been noted upon adaptation of primary isolates (PI) to growth in established T-cell lines. All of the T-cell line-adapted (TCLA) viruses studied to date utilize CXCR4 but not CCR5. This observation had been suggested as an explanation for the sensitivity of TCLA, but not PI, viruses to neutralization by recombinant gp120 antisera and V3-directed monoclonal antibodies, but recent studies have shown coreceptor utilization to be independent of neutralization sensitivity. Here we describe a newly isolated TCLA virus that is sensitive to neutralization but continues to utilize both CXCR4 and CCR5 for infection. This finding further divorces coreceptor specificity from neutralization sensitivity and from certain changes in cell tropism. That the TCLA virus can continue to utilize CCR5 despite the changes that occur upon adaptation and in the apparent absence of CCR5 expression in the FDA/H9 T-cell line suggests that the interaction between envelope protein and coreceptor may be mediated by multiple weak interactions along a diffuse surface. 相似文献
9.
Exclusive and Persistent Use of the Entry Coreceptor CXCR4 by Human Immunodeficiency Virus Type 1 from a Subject Homozygous for CCR5 Δ32 下载免费PDF全文
Nelson L. Michael Julie A. E. Nelson Vineet N. KewalRamani George Chang Stephen J. OBrien John R. Mascola Barbara Volsky Mark Louder Gilbert C. White II Dan R. Littman Ronald Swanstrom Thomas R. OBrien 《Journal of virology》1998,72(7):6040-6047
Individuals who are homozygous for the 32-bp deletion in the gene coding for the chemokine receptor and major human immunodeficiency virus type 1 (HIV-1) coreceptor CCR5 (CCR5 −/−) lack functional cell surface CCR5 molecules and are relatively resistant to HIV-1 infection. HIV-1 infection in CCR5 −/− individuals, although rare, has been increasingly documented. We now report that the viral quasispecies from one such individual throughout disease is homogenous, T cell line tropic, and phenotypically syncytium inducing (SI); exclusively uses CXCR4; and replicates well in CCR5 −/− primary T cells. The recently discovered coreceptors BOB and Bonzo are not used. Although early and persistent SI variants have been described in longitudinal studies, this is the first demonstration of exclusive and persistent CXCR4 usage. With the caveat that the earliest viruses available from this subject were from approximately 4 years following primary infection, these data suggest that HIV-1 infection can be mediated and persistently maintained by viruses which exclusively utilize CXCR4. The lack of evolution toward the available minor coreceptors in this subject underscores the dominant biological roles of the major coreceptors CCR5 and CXCR4. This and two similar subjects (R. Biti, R. Ffrench, J. Young, B. Bennetts, G. Stewart, and T. Liang, Nat. Med. 3:252–253, 1997; I. Theodoreu, L. Meyer, M. Magierowska, C. Katlama, and C. Rouzioux, Lancet 349:1219–1220, 1997) showed relatively rapid CD4+ T-cell declines despite average or low initial viral RNA load. Since viruses which use CXCR4 exclusively cannot infect macrophages, these data have implications for the relative infection of the T-cell compartment versus the macrophage compartment in vivo and for the development of CCR5-based therapeutics. 相似文献
10.
Virus Entry via the Alternative Coreceptors CCR3 and FPRL1 Differs by Human Immunodeficiency Virus Type 1 Subtype 下载免费PDF全文
R. Nedellec M. Coetzer N. Shimizu H. Hoshino V. R. Polonis L. Morris U. E. A. M?rtensson J. Binley J. Overbaugh D. E. Mosier 《Journal of virology》2009,83(17):8353-8363
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes. 相似文献
11.
Microglia Express CCR5, CXCR4, and CCR3, but of These, CCR5 Is the Principal Coreceptor for Human Immunodeficiency Virus Type 1 Dementia Isolates 总被引:11,自引:3,他引:11 下载免费PDF全文
Andrew V. Albright Joseph T. C. Shieh Takayuki Itoh Benhur Lee David Pleasure Michael J. OConnor Robert W. Doms Francisco Gonzlez-Scarano 《Journal of virology》1999,73(1):205-213
Microglia are the main human immunodeficiency virus (HIV) reservoir in the central nervous system and most likely play a major role in the development of HIV dementia (HIVD). To characterize human adult microglial chemokine receptors, we analyzed the expression and calcium signaling of CCR5, CCR3, and CXCR4 and their roles in HIV entry. Microglia expressed higher levels of CCR5 than of either CCR3 or CXCR4. Of these three chemokine receptors, only CCR5 and CXCR4 were able to transduce a signal in microglia in response to their respective ligands, MIP-1β and SDF-1α, as recorded by single-cell calcium flux experiments. We also found that CCR5 is the predominant coreceptor used for infection of human adult microglia by the HIV type 1 dementia isolates HIV-1DS-br, HIV-1RC-br, and HIV-1YU-2, since the anti-CCR5 antibody 2D7 was able to dramatically inhibit microglial infection by both wild-type and single-round luciferase pseudotype reporter viruses. Anti-CCR3 (7B11) and anti-CXCR4 (12G5) antibodies had little or no effect on infection. Last, we found that virus pseudotyped with the DS-br and RC-br envelopes can infect cells transfected with CD4 in conjunction with the G-protein-coupled receptors APJ, CCR8, and GPR15, which have been previously implicated in HIV entry. 相似文献
12.
V3 Recombinants Indicate a Central Role for CCR5 as a Coreceptor in Tissue Infection by Human Immunodeficiency Virus Type 1 总被引:1,自引:4,他引:1 下载免费PDF全文
Stephen Y. Chan Roberto F. Speck Christopher Power Sarah L. Gaffen Bruce Chesebro Mark A. Goldsmith 《Journal of virology》1999,73(3):2350-2358
Binding of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 to both CD4 and one of several chemokine receptors (coreceptors) permits entry of virus into target cells. Infection of tissues may establish latent viral reservoirs as well as cause direct pathologic effects that manifest as clinical disease such as HIV-associated dementia. We sought to identify the critical coreceptors recognized by HIV-1 tissue-derived strains as well as to correlate these coreceptor preferences with site of infection and dementia diagnosis. To reconstitute coreceptor use, we cloned HIV-1 envelope V3 sequences encoding the primary determinants of coreceptor specificity from 13 brain-derived and 6 colon-derived viruses into an isogenic (NL4-3) viral background. All V3 recombinants utilized the chemokine receptor CCR5 uniformly and efficiently as a coreceptor but not CXCR4, BOB/GPR15, or Bonzo/STRL33. Other receptors such as CCR3, CCR8, and US28 were inefficiently and variably used as coreceptors by various envelopes. CCR5 without CD4 present did not allow for detectable infection by any of the tested recombinants. In contrast to the pathogenic switch in coreceptor specificity frequently observed in comparisons of blood-derived viruses early after HIV-1 seroconversion and after onset of AIDS, the characteristics of these V3 recombinants suggest that CCR5 is a primary coreceptor for brain- and colon-derived viruses regardless of tissue source or diagnosis of dementia. Therefore, tissue infection may not depend significantly on viral envelope quasispeciation to broaden coreceptor range but rather selects for CCR5 use throughout disease progression. 相似文献
13.
14.
Epithelial Uptake and Transport of Cell-Free Human Immunodeficiency Virus Type 1 and gp120-Coated Microparticles 总被引:2,自引:0,他引:2 下载免费PDF全文
Andreas Kage Eskandar Shoolian Katharina Rokos Muhsin
zel Rolf Nuck Werner Reutter Eckart Kttgen Georg Pauli 《Journal of virology》1998,72(5):4231-4236
Cell-free human immunodeficiency virus type 1 (HIV-1) can be taken up and released by a monolayer of primary human gingival cells and remain infectious for CD4+ cells. Virus-sized latex particles covalently coated with purified native HIV-1 envelope glycoprotein gp120 are also transported through the primary epithelial cells. This process is significantly stimulated by increasing the intracellular cyclic AMP (cAMP) concentration. Inhibition experiments with mannan and α-methyl-mannopyranoside indicated that mannosyl groups are involved in the interaction between gp120 and gingival cells. An increase of cellular oligomannosyl receptors by incubation with the mannosidase inhibitor deoxymannojirimycin augmented transcellular transport of the gp120-coated particles. The results suggest that infectious HIV can penetrate gingival epithelia by a cAMP-dependent transport mechanism involving interaction of the lectin-like domain of gp120 and mannosyl residues on glycoproteins on the mucosal surface. Penetration of HIV could be inhibited by soluble glycoconjugates present in oral mucins. 相似文献
15.
共同受体CCR5与HIV gp120的相互作用及相关肽类抑制剂 总被引:1,自引:0,他引:1
存在于巨嗜细胞、树突状细胞等胞膜上的G蛋白偶联受体CCR5作为R5嗜性的HIV-1病毒的主要共同受体,可以和病毒的表面糖蛋白gp120相互作用,并由此决定了病毒的另一表面糖蛋白gp41融合构象的形成以及随后的病毒与细胞的膜融合。CCR5在细胞膜上迅速移动,并与其他分子(如CD4和胆固醇)存在相互作用,加速了与gp120的作用。CCR5的这种中心作用已经使其成为抗HIV-1药物研究的很有吸引力的靶点。目前已发现一系列衍生于CCR5的胞外区的多肽、天然存在的蛋白质以及设计的多肽,可干扰CCR5与gp120之间的相互作用,从而抑制病毒复制。 相似文献
16.
Peptide Ligands to Human Immunodeficiency Virus Type 1 gp120 Identified from Phage Display Libraries 总被引:7,自引:0,他引:7 下载免费PDF全文
We have used phage-displayed peptide libraries to identify novel ligands to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120. Screening of libraries of random 12-mers, 7-mers, and cyclic 9-mers produced two families of gp120 binding peptides. Members of a family with the prototype sequence RINNIPWSEAMM (peptide 12p1) inhibit the interaction between gp120 and both four-domain soluble CD4 (4dCD4) and monoclonal antibody (MAb) 17b, a neutralizing antibody that covers the chemokine receptor binding surface on gp120. Peptide 12p1 inhibits the interaction of 4dCD4 with gp120 from three different HIV strains, implying that it binds to a conserved site on gp120. Members of a second family of peptides, with the prototype sequence TSPYEDWQTYLM (peptide 12p2), bind more weakly to gp120. They do not detectably affect its interaction with 4dCD4, but they enhance its binding to MAb 17b. A common sequence motif in the two peptide families and cross-competition for gp120 binding suggest that they have overlapping contacts. Their divergent effects on the affinity of gp120 for MAb 17b may indicate that their binding stabilizes distinct conformational states of gp120. The functional properties of 12p1 suggest that it might be a useful lead for the development of inhibitors of HIV entry. 相似文献
17.
Cytokine Regulation of Human Immunodeficiency Virus Type 1 Entry and Replication in Human Monocytes/Macrophages through Modulation of CCR5 Expression 总被引:7,自引:2,他引:7 下载免费PDF全文
Jinhai Wang Gregory Roderiquez Tams Oravecz Michael A. Norcross 《Journal of virology》1998,72(9):7642-7647
Human macrophages express chemokine receptors that act as coreceptors for human immunodeficiency virus type 1 (HIV-1) and are major targets for HIV-1 infection in vivo. The effects of cytokines on HIV-1 infection of macrophages and on the expression of CCR5, the principal coreceptor for macrophage-tropic viruses, have now been investigated. Expression of CCR5 on the surface of freshly isolated human monocytes was virtually undetectable by flow cytometry with the monoclonal antibody 5C7. However, after culture of monocytes for 48 h in serum-free medium, approximately 30% of the resulting macrophages expressed CCR5 and the cells were susceptible to infection by macrophage-tropic HIV-1. Addition of either macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) to the cultures markedly increased both the extent of HIV-1 entry and replication as well as surface expression of CCR5. In contrast, addition of the T-helper 2 (Th2) cell-derived cytokine interleukin-4 (IL-4) or IL-13 prevented the expression of CCR5 induced by culture in medium alone, and IL-4 inhibited virus entry, replication, and cytopathicity under these conditions. IL-4 or IL-13 also prevented the stimulatory effects of M-CSF or GM-CSF on CCR5 expression as well as HIV-1 entry and replication. In addition, IL-4 reversed the increase in CCR5 expression induced by pretreatment of cells with M-CSF. Although IL-10 also inhibits HIV-1 replication in macrophages, it did not suppress surface CCR5 expression induced by colony-stimulating factors. These results indicate that the cytokine environment determines the susceptibility of macrophages to HIV-1 infection by various mechanisms, one of which is the regulation of HIV-1 coreceptor expression. 相似文献
18.
A Cell Line-Based Neutralization Assay for Primary Human Immunodeficiency Virus Type 1 Isolates That Use either the CCR5 or the CXCR4 Coreceptor 下载免费PDF全文
Alexandra Trkola Jamie Matthews Cynthia Gordon Tom Ketas John P. Moore 《Journal of virology》1999,73(11):8966-8974
We describe here a cell line-based assay for the evaluation of human immunodeficiency virus type 1 (HIV-1) neutralization. The assay is based on CEM.NKR cells, transfected to express the HIV-1 coreceptor CCR5 to supplement the endogenous expression of CD4 and the CXCR4 coreceptor. The resulting CEM.NKR-CCR5 cells efficiently replicate primary HIV-1 isolates of both R5 and X4 phenotypes. A comparison of the CEM.NKR-CCR5 cells with mitogen-activated peripheral blood mononuclear cells (PBMC) in neutralization assays with sera from HIV-1-infected individuals or specific anti-HIV-1 monoclonal antibodies shows that the sensitivity of HIV-1 neutralization is similar in the two cell types. The CEM.NKR-CCR5 cell assay, however, is more convenient to perform and eliminates the donor-to-donor variation in HIV-1 replication efficiency, which is one of the principal drawbacks of the PBMC-based neutralization assay. We suggest that this new assay is suitable for the general measurement of HIV-1 neutralization by antibodies. 相似文献
19.
20.
Chemokine Coreceptor Usage by Diverse Primary Isolates of Human Immunodeficiency Virus Type 1 总被引:4,自引:4,他引:4 下载免费PDF全文
Linqi Zhang Tian He Yaoxing Huang Zhiwei Chen Young Guo Sam Wu Kevin J. Kunstman R. Clark Brown John P. Phair Avidan U. Neumann David D. Ho Steven M. Wolinsky 《Journal of virology》1998,72(11):9307-9312
We tested chemokine receptor subset usage by diverse, well-characterized primary viruses isolated from peripheral blood by monitoring viral replication with CCR1, CCR2b, CCR3, CCR5, and CXCR4 U87MG.CD4 transformed cell lines and STRL33/BONZO/TYMSTR and GPR15/BOB HOS.CD4 transformed cell lines. Primary viruses were isolated from 79 men with confirmed human immunodeficiency virus type 1 (HIV-1) infection from the Chicago component of the Multicenter AIDS Cohort Study at interval time points. Thirty-five additional well-characterized primary viruses representing HIV-1 group M subtypes A, B, C, D, and E and group O and three primary simian immunodeficiency virus (SIV) isolates were also used for these studies. The restricted use of the CCR5 chemokine receptor for viral entry was associated with infection by a virus having a non-syncytium-inducing phenotype and correlated with a reduced rate of disease progression and a prolonged disease-free interval. Conversely, broadening chemokine receptor usage from CCR5 to both CCR5 and CXCR4 was associated with infection by a virus having a syncytium-inducing phenotype and correlated with a faster rate of CD4 T-cell decline and progression of disease. We also observed a greater tendency for infection with a virus having a syncytium-inducing phenotype in men heterozygous for the defective CCR5 Δ32 allele (25%) than in those men homozygous for the wild-type CCR5 allele (6%) (P = 0.03). The propensity for infection with a virus having a syncytium-inducing phenotype provides a partial explanation for the rapid disease progression among some men heterozygous for the defective CCR5 Δ32 allele. Furthermore, we did not identify any primary viruses that used CCR3 as an entry cofactor, despite this CC chemokine receptor being expressed on the cell surface at a level commensurate with or higher than that observed for primary peripheral blood mononuclear cells. Whereas isolates of primary viruses of SIV also used STRL33/BONZO/TYMSTR and GPR15/BOB, no primary isolates of HIV-1 used these particular chemokine receptor-like orphan molecules as entry cofactors, suggesting a limited contribution of these other chemokine receptors to viral evolution. Thus, despite the number of chemokine receptors implicated in viral entry, CCR5 and CXCR4 are likely to be the physiologically relevant chemokine receptors used as entry cofactors in vivo by diverse strains of primary viruses isolated from blood. 相似文献