首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new IncQ plasmid R89S has been analysed by molecular-genetic methods. A restriction map of this plasmid has been constructed and regions of homology with the plasmid RSF1010 have been identified. A genetic map of the plasmid R89S has been prepared based on the deletion and insertion plasmid derivatives. The phenotypic analysis of the derivatives has identified the location of genes coding for replication, incompatibility, mobilization for genetic transfer and resistance to streptomycin in the genome of R89S.  相似文献   

2.
Abstract: A 12.4-kb plasmid, pTF-FC2, that was isolated from Thiobacillus ferrooxidans and which is capable of replication in a wide range of Gram-negative bacteria, has been sequenced. The extent of the regions involved in both replication and mobilization have been delineated. The site of initiation of replication ( oriV ) has been localized on a 185-bp fragment and the origin of transfer ( oriT ) on a 138-bp fragment. Three proteins that were essential for replication and four that were essential for mobilization have been identified. The origin of replication was clearly similar to that of the IncQ plasmids although no complementation or incompatibility between pTF-FC2 and the IncQ plasmid, R300B, was detected. There was a clear similarity in the size,location and amino acid sequence of the proteins of the pTF-FC2 mobilization region with those of the TraI region of the IncP plasmids, RP4 and R751.Two inverted repeated sequences which had 37/38-bp and 38/38-bp sequence identity with the Tn 21 transposon were identified. The C-terminal part of a transposase and the N-terminal portion of a resolvase were located between the inverted repeats. These open reading frames are most likely the remnants of a defective transposon. A protein with homology to a mercury- resistance regulator was also present within the transposon-like element although no gene encoding for mercury reductase could be indentified.  相似文献   

3.
Properties of R1162, a broad-host-range, high-copy-number plasmid.   总被引:20,自引:12,他引:8       下载免费PDF全文
R Meyer  M Hinds    M Brasch 《Journal of bacteriology》1982,150(2):552-562
Regions of plasmid DNA encoding characteristic properties of the IncQ (P-4) group plasmid R1162 were identified by mutagenesis and in vitro cloning. Coding sequences sufficient for expression of incompatibility and efficient conjugal mobilization by plasmid R751 were found to be linked to the origin of DNA replication. In contrast, there was a region remote from the origin, and active in trans, that was required for plasmid maintenance. A derivative that was temperature sensitive for stability was isolated. The defect mapped at or near the region required for plasmid maintenance and resulted in far fewer copies of supercoiled plasmid DNA per cell under permissive conditions. A second region required for stability was also identified from the behavior of a deletion derivative of R1162, which did not, however, show an altered number of supercoiled plasmid DNA copies. Finally, a plasmid DNA mutation resulting in a substantially higher copy number was isolated. Plasmid reconstruction experiments suggested that the mutation was linked to the replicative origin.  相似文献   

4.
The gram-negative anaerobe Dichelobacter nodosus is the primary causative agent of ovine footrot, a mixed bacterial infection of the hoof. We report here the characterization of a novel native plasmid, pDN1, from D. nodosus. Sequence analysis has revealed that pDN1 has a high degree of similarity to broad-host-range plasmids belonging, or related, to Escherichia coli incompatibility group Q. However, in contrast to these plasmids, pDN1 encodes no antibiotic resistance determinants, lacks genes E and F, and hence is smaller than all previously reported IncQ plasmids. In addition, pDN1 belongs to a different incompatibility group than the IncQ plasmids to which it is related. However, pDN1 does contain the replication and mobilization genes that are responsible for the extremely broad host range characteristic of IncQ plasmids, and derivatives of pDN1 replicate in E. coli. In addition, the mobilization determinants of pDN1 are functional, since derivatives of pDN1 are mobilized by the IncPalpha plasmid RP4 in E. coli.  相似文献   

5.
Summary The nucleotide sequence of the entire region required for autonomous replication and incompatibility of an R100 plasmid derivative, pSM1, has been determined. This region includes the replication region and all plasmid encoded information required for replication. Numerous reading frames for possible proteins can be found in this region. The existence of one of these proteins called RepA1 (285 amino acids; 33,000 daltons) which is encoded within the region known by cloning analysis to be required for replication is supported by several lines of evidence. These include an examination of the characteristic sequences on the proximal and distal ends of the coding region, a comparison of the sequence of the replication regions of pSM1 and the highly related R1 plasmid derivative Rsc13 as well as other biochemical and genetic evidence. The existence of two other proteins, RepA3 (64 amino acids; 7000 daltons) and RepA2 (103 amino acids; 11,400 daltons) is also consistent with most of the criteria mentioned above. However, the region encoding RepA3, which by cloning analysis is within the region responsible for both replication and incompatibility, has never been demonstrated to produce a 7,000 dalton polypeptide. Since a large secondary structure can be constructed in this region, it is possible that the region contains structure or other information that is responsible for incompatibility. RepA2, encoded entirely within the region identified by cloning analysis to be responsible for incompatibility but not for replication can be visualized in vivo and in vitro. However, the nucleotide sequence of the region encoding RepA2 is completely different in mutually incompatible plasmid derivatives of R1 and R100. It is therefore unlikely that RepA2 plays a major role in incompatibility. Thus, we predict that RepA1 is required to initiate DNA synthesis at the replication origin and that the region proximal to RepA1 either encodes a gene product or structure information that is responsible for incompatibility.  相似文献   

6.
The expression of incompatibility properties between the IncX plasmids R6K and R485 of Escherichia coli was examined. For small autonomously replicating derivatives of both plasmid elements, the requirements for incompatibility expression include a functional R485 replicon and an active R6K beta-origin region. Functional R6K alpha and gamma origins are not directly involved in incompatibility expression between R6K and R485. A trans-acting replication system was constructed for plasmid R485. It consists of a 3.2-(kb) DNA fragment of R485 that specifies a product(s) in trans which supports replication from an R485 origin plasmid. A minimal R485 origin region of 591 bp was derived utilizing this trans-acting replication system and the nucleotide sequence of this origin region determined. The most striking feature of the sequence is the presence of six tandem 22-bp nucleotide sequence direct repeats.  相似文献   

7.
The genetic determinants for replication and incompatibility of plasmid R1 were investigated by gene cloning methods, and three types of R1 miniplasmid derivatives were generated. The first, exemplified by plasmid pKT300, consisted of a single BglII endonuclease-generated deoxyribonucleic acid fragment derived from the R1 region that is located between the determinants for conjugal transfer and antibiotic resistance. Two types of miniplasmids could be formed from PstI endonuclease-generated fragments of pKT300. One of these, which is equivalent to miniplasmids previously generated from plasmids R1-19 and R1-19B2, consisted of two adjacent PstI fragments that encode the RepA replication system of plasmid R1. The other type contained a segment of R1, designated the RepD replication region, that is adjacent to the RepA region and that has not been identified previously as having the capacity for autonomous replication. Plasmid R1, therefore, contained two distinct deoxyribonucleic acid segments capable of autonomous replication. The RepA-RepD miniplasmid pKT300 had a copy number about eightfold higher than that of R1 and hence lacked a determinant for the regulation of plasmid copy number. Like R1, it was maintained stably in dividing bacteria. RepA miniplasmids had copy numbers which were two- to fourfold higher than that of R1 (i.e., which were lower than that of pKT300) and were maintained slightly less stably than those of pKT300 and R1. The RepD miniplasmid was not maintained stably in dividing bacteria. Previous experiments have shown that incompatibility of IncFII group plasmids is specified by a plasmid copy control gene. Despite the fact that RepA miniplasmids of R1 were defective in copy control, they nevertheless expressed incompatibility. This suggests that two genes are responsible for plasmid copy control, one that specifies incompatibility and is located on RepA miniplasmids and another that is located outside of, but adjacent to, the RepA replication region. Hybrid plasmids composed of pBR322 and one PstI fragment from the RepA region, P-8, exhibited incompatibility towards R2 and RepA miniplasmids but not the RepD miniplasmid, whereas hybrids composed of pBR322 and the PstI fragment of the RepD region, P-3, exhibited incompatibility towards R1 and the RepD miniplasmid but not RepA miniplasmids. These results indicate that the two replication systems are functionally distinct and that, although the RepA system is the principal replication system of R1, the RepD system also plays a role in the maintenance of this plasmid.  相似文献   

8.
The genetic basis of the promiscuous behaviour of bacterial plasmids has been investigated by study of the incompatibility P-1 group of conjugative plasmids of gram-negative bacteria. Both transposon mutagenesis and the construction of minireplicons linking varying combinations of the plasmid genome have shown that specific genomic regions control the conjugational transfer and vegetative replication of the plasmid in specific bacterial hosts. These include the plasmid DNA primase gene, the origin of plasmid transfer, a region near the origin of transfer, the origin of plasmid vegetative replication, thetrans- acting gene essential for the initiation of plasmid replication and a region involved in its regulation. DNA sequence analysis has identified the requirement of specific direct repeats within the origin of replication for plasmid replication in some but not in other hosts. The cloning of some of the trans-acting genes onto multicopy cloning vectors and complementation tests have shown that the requirements of these gene products vary in different hosts and that the plasmid has evolved genetic strategies for their optimal expression.  相似文献   

9.
Characterization of the maintenance functions of IncFIV plasmid R124   总被引:1,自引:0,他引:1  
The genetic arrangement of the regions involved in R124 replication and incompatibility have been located and their homology to the IncFI basic replicons has been assessed. We show that R124 has homology with all three basic replicons, RepFIA, RepFIB, and RepFIC, and that these regions, FIVA, RepFIVB, and RepFIVC, are widely separated on the R124 genome. Cloning of autonomously replicating fragments has shown that RepFIVB and RepFIVC are functional in R124 and express incompatibility. The FIVA region was unable to form a functional replicon and when cloned into pUC8 lacked incompatibility activity. A fourth region of R124 was identified, which although not essential for replication stabilized mini-R124 plasmid replication and exhibited incompatibility with R124. This region, designated IncIV, showed no homology to RepFIA, RepFIB, or RepFIC. Incompatibility expression of IncIV required only the EcoRI fragment E13 but the strength of the reaction was modified in the presence of other fragments. The replication and incompatibility properties of an R124 deletion derivative indicated that R124 can switch its replication to either RepFIVB or RepFIVC when in the presence of an incompatible plasmid. The ambiguous incompatibility reactions reported for R124 is a result of the expression of the two functional replicons, RepFIVB and RepFIVC, and that expressed by IncIV.  相似文献   

10.
Isolation of the origin of replication of the IncW-group plasmid pSa   总被引:9,自引:0,他引:9  
The origin of replication of the IncW plasmid pSa has been cloned and the function of this origin in Escherichia coli examined. A 1.9-kb region of DNA is required for efficient autonomous replication, and a 0.47-kb fragment within this region can initiate replication only in the presence of an autonomously replicating derivative of pSa. An Mr 35,000 protein (repA) is encoded adjacent to the origin and is required for efficient initiation of replication. The derivatives examined provide information suggesting a direct role of partition factors in plasmid replication and incompatibility.  相似文献   

11.
The phenomenon of incompatibility has been investigated using deletion mutants of hybrid bireplicon plasmid pAS8. The hybrid pAS8 displays incompatibility specific for both components of its structure. In contrast to P-specificity of pAS8, functions of ColE1-specificity are not effectively expressed. Expression of ColE1-specificity in pAS8 plasmid and its derivatives is characterized by different directions and this is due to the presence or absence of genes of RP4 replication machinery in the plasmid DNA. Mutant plasmids show different efficiency of P-specificity depending on the extension of deletion in the region of essential genes of the RP4 component. Some of the mutants, in spite of the loss of replication genes, including origin of vegetative replication, are incompatible with the representatives of the Inc P group in both directions of testing. Different character and the level of expression of ColE1- and P-specificity in the pAS8 hybrid and its deletion derivatives are not associated with change in the number of plasmid DNA copies, for all of them are subjects to stringent control of replication. The data suggest the existence of incompatibility functions control mechanism which does not seem to include replication genes. Possible ways of realization of the inc genes functions are discussed.  相似文献   

12.
A 1.45-megadalton segment of DNA cloned from a miniplasmid derived in vivo from a copy number mutant of the R plasmid NR1 has been shown to contain all functions essential for incompatibility and autonomous plasmid replication in Escherichia coli. Specific endonuclease cleavage sites within this DNA segment that localize functions required for replication have been mapped. A 0.45-megadalton fragment that specifies the FII incompatibility of NR1 has been identified within the replication region, and DNA fragments containing this incompatibility region, but lacking other functions required for replication, have been cloned.  相似文献   

13.
B V Polevoda  T V Tso?  A M Boronin 《Genetika》1987,23(10):1823-1831
The data are presented on the localization of genetic determinants of resistance to streptomycin, ampicillin and sulfanilamides on the physical map of conjugative R plasmid pBS52 of 38,000 bp which has a broad bacterial host range and belongs to a new incompatibility group. The plasmid has a natural "polylinker" site (less than 200 bp) containing (in the order of arrangement) the recognition sites for restriction enzymes: BamHI-EcoRI-PstI-EcoRV-BglII (PvuII). The comparative analysis shows that pBS52 contains a segment homologous to DNA of plasmid RSE1010 (IncP-4). The evolutionary origin of plasmid pBS52 is discussed. The recA-independent formation of the mini-derivatives of pBS373 and pBS374 types during the transformation of Escherichia coli with pBS52 plasmid DNA has been shown. Plasmids pBS373 and yBS374 are capable of autonomous replication in Pseudomonas putida and P. aeruginosa cells, which is provided by the rep system of IncP-4 replicon.  相似文献   

14.
15.
Summary A genetic map of the W incompatibility group plasmid pSa has been prepared through the construction of deletion derivatives of pSa and the cloning of various fragments of pSa in pBR322. Phenotypic analysis of these derivatives has identified the location of genes encoding resistance to chloramphenicol, sulfonamides, spectinomycin, streptomycin, kanamycin, gentamycin, and tobramycin. Information sufficient for the replication of the plasmid in both Escherichia coli and Agrobacterium tumefaciens is contained within a 4 kilobase pair region. Two regions have been identified as involved in the transfer of the plasmid; one of these regions is also involved in the inhibition of oncogenesis by pSa when it is present in an oncogenic strain of A. tumefaciens. Certain of the deletion derivatives of pSa are potential vectors for the cloning and analysis of A. tumefaciens Ti plasmid DNA.  相似文献   

16.
17.
The nucleotide sequence of the replication origin beta of the plasmid R6K   总被引:11,自引:0,他引:11  
We h ave identified by molecular cloning a region of 283 base pairs of the HindIII 2 fragment of R6K which corresponds to the region of the replication origin beta. This 283 base-pair DNA fragment, when present contiguously with the structural gene for the replication initiation protein of R6K, encoded in the HindIII 9-15 and part of HindIII 2 restriction fragments, will support the replication of a plasmid chimera containing the pBR322 replicon in a pol Ats host at the nonpermissive temperature. The nucleotide sequence of the region of replication origin beta has been determined. The nucleotide sequence has some homology with the ori gamma region of R6K; it has a 15-base-pair homology with the replication origin of Escherichia coli.  相似文献   

18.
Summary A DNA sequence cosisting of 617 base pairs (bp) from the region of the origin of replication of the broad-host range plasmid RK2 has been determined. Included within this sequence is a 393 bp HpaII restriction fragment that provides a functional origin or replication when other essential RK2 specified functions are provided in trans. Also contained in this sequence is a region, distinguished functionally from the replication origin, which is involved in the expression of inc 2 incompatibility, i.e., the ability of derivatives of RK2 to eliminate a resident RK2 plasmid. The 617 bp sequence includes eight 17 base pair direct repeats with 5 located within the region required for a functional replication origin and 3 within the region involved in inc 2 incompatibility. In addition, a 40 bp region rich in A-T followed by a 60 bp stretch having a high G+C content is present. Deletion evidence indicates that the A-T rich and possibly the G+C regions are required for a functional replication origin. Based on the evidence contained in this and the preceding paper (Thomas et al. 1980 b) a model will be presented for the involvement of these specific sequences in the initiation of RK2 DNA replication, plasmid maintenance and plasmid incompatibility.  相似文献   

19.
20.
Genetic and physical map of a P1 miniplasmid   总被引:23,自引:11,他引:12       下载免费PDF全文
The prophage form of bacteriophage P1 is a unit-copy plasmid which is maintained with great fidelity in its Escherichia coli host. The plasmid maintenance functions of P1 are clustered in one region of the genome. An 11.5-kilobase fragment from this region has been cloned into a lambda delta att vector and promotes stable unit-copy plasmid maintenance. The properties of the lambda vector facilitated the isolation of deletion mutants affecting the P1 DNA. Twenty-eight deletion mutants were isolated, and their lesions were mapped by physical techniques. The genetic properties of the mutants with respect to plasmid replication, stability of plasmid maintenance, and ability to exert incompatibility effects against P1 and P7 plasmids were determined. These properties, along with those of several subfragments of the P1 insert cloned into high-copy-number plasmid vectors, allow the construction of an unambiguous genetic and physical map of the maintenance functions. A region of less than 3 kilobases, the rep region, is essential for plasmid replication and contains the incA incompatibility determinant within an 800-base-pair segment. Immediately adjacent to rep is a second region of approximately 3 kilobases which is required for stable plasmid maintenance, but not replication. This region, par, contains a second incompatibility element incB which is approximately 1 kilobase in size. The par region appears to specify equipartition of plasmid copies to daughter cells during cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号