首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ramírez  C.  San Martín  C.  Oyarzún  A.  Figueroa  H. 《Plant Ecology》1997,130(2):101-109
The morphology of the 11 taxa of South American Nothofagus are compared. Thirty eight characteristics were taken into account: 12 from leaves, 3 from stipules, 3 from buds, 6 from cupules, 7 from fruits, 4 from petioles and 3 from male flowers. The data matrix, with average values of 100 measurements per taxon, was analyzed with multivariate statistical methods of classification and polar and spatial ordination. Five groups were established: The first one (Nothofagus obliqua, N. obliqua var. macrocarpa, N. leoni and N. alessandrii), with deciduous leaves, is adapted to mediterranean climatic conditions. The second groups (N. dombeyi, N. nitida and N. antarctica), with small leaves which are evergreen for the first two species and deciduous for the last, develops under temperate humid conditions typical of the Valdivian region. The three remaining groups correspond to isolated species with different requirements: N. glauca, has large deciduous leaves and colonizes the most xerophytic biotope that a Nothofagus in central Chile can tolerate. N. pumilio, with mid-sized deciduous leaves, is adapted to the cold and dry zones of the southern Andes. Finally, N. betuloides, with small evergreen leaves, grows in the cold/humid somewhat boggy conditions of the Magellanic region.  相似文献   

2.
An analysis was carried out on the length, diameter and number of leaves, and the ratios between these variables for current-year growth units (sibling growth units) derived from different nodes of previous-year growth units (parent growth units) of young Nothofagus dombeyi and Nothofagus pumilio trees. Changes in sibling growth unit length, diameter, and number of leaves with position on the parent growth unit were assessed. In both species, sibling-growth unit morphology varied according to both the axis type of the parent growth unit and the position of the sibling growth unit on its parent growth unit. For the largest parent growth units, the length, diameter and number of leaves of their sibling growth units decreased from distal to proximal positions on the parent growth unit. Distal sibling growth units had a more slender stem and longer internodes than proximal sibling growth units. Sibling growth units in equivalent positions tended to have a more slender stem for N. dombeyi than for N. pumilio. Long main-branch growth units of N. pumilio had longer internodes than those of N. dombeyi; the converse was true for shorter growth units. The growth unit diameter/leaf number ratio was consistently higher for N. pumilio than for N. dombeyi. Nothofagus pumilio axes would go through a faster transition from an 'exploring' morphology to an 'exploiting' morphology than N. dombeyi axes. Within- and between-species variations in growth unit morphology should be considered when assessing the adaptive value of the branching pattern of plants.  相似文献   

3.
A D Twyford  C A Kidner  R A Ennos 《Heredity》2014,112(4):382-390
Begonia is one of the ten largest plant genera, with over 1500 species. This high species richness may in part be explained by weak species cohesion, which has allowed speciation by divergence in allopatry. In this study, we investigate species cohesion in the widespread Central American Begonia heracleifolia and Begonia nelumbiifolia, by genotyping populations at microsatellite loci. We then test for post-zygotic reproductive barriers using experimental crosses, and assess whether sterility barriers are related to intraspecific changes in genome size, indicating major genome restructuring between isolated populations. Strong population substructure was found for B. heracleifolia (FST=0.364, FST=0.506) and B. nelumbiifolia (FST=0.277, FST=0.439), and Bayesian admixture analysis supports the division of most populations into discrete genetic clusters. Moderate levels of inferred selfing (B. heracleifolia s=0.40, B. nelumbiifolia s=0.62) and dispersal limitation are likely to have contributed to significant genetic differentiation (B. heracleifolia Jost''s D=0.274; B. nelumbiifolia D=0.294). Interpopulation crosses involving a divergent B. heracleifolia population with a genome size ∼10% larger than the species mean had a ∼20% reduction in pollen viability compared with other outcrosses, supporting reproductive isolation being polymorphic within the species. The population genetic data suggest that Begonia populations are only weakly connected by gene flow, allowing reproductive barriers to accumulate between the most isolated populations. This supports allopatric divergence in situ being the precursor of speciation in Begonia, and may also be a common speciation mechanism in other tropical herbaceous plant groups.  相似文献   

4.
Electrophoretic variation in proteins encoded by 21 loci was analysed in five populations of the bank vole (Clethrionomys glareolus) from southern and eastern Poland. Intrapopulation variation is high ; the average Nei's distance among populations equals 0.193. Comparatively high FIS (0.306) values suggest high levels of differentiation. Variation in allele frequencies (FST is high (ranging from 0.137 to 0.572) and reflects considerable geographic genetic heterogeneity. Genetic and geographic distances are not consistently associated.  相似文献   

5.
Two species of the genus Taricha are widely distributed. T. granulosa ranges from southern Alaska to central California. T. torosa is comprised of two described subspecies, T. t. torosa, which occupies much of the coast ranges of California, and T. t. sierrae, which inhabits the western slopes of the Sierra Nevada Mountains. A starch gel electrophoretic survey for genetic variation at 34 loci in four population samples of T. granulosa and at 40 loci in five population samples of T. torosa reveals differences among these taxa both in amounts of intrapopulational variability and in patterns of geographic variation. Average observed heterozygosity is 9.6%±0.3% in T. granulosa, 3.3%±0.5% in T. t. torosa, and 7.2%±1.2% in T. t. sierrae. Average numbers of alleles per locus and proportions of polymorphic loci are also highest in T. granulosa, intermediate in T. t. sierrae, and lowest in T. t. torosa. Oregon and California granulosa are genetically nearly as different as the subspecies of torosa, but geographic variation is continuous in the former. T. torosa on the other hand is comprised of three distinct gene pools—T. t. sierrae and northern and southern races of T. t. torosa. Strikingly different amounts of intrapopulational genetic variation and patterns of geographic variation may be explained by steadystate species differences, but historical causes may also exist.This work was supported by AEC Research Contract AT(04-3)34 and NSF Grant GB-42246 to F. J. Ayala and by an NIH predoctoral traineeship administered by the Department of Genetics, U.C. Davis.  相似文献   

6.
Viruses belonging to the genus Megalocytivirus in the family Iridoviridae have caused mass mortalities in marine and freshwater fish in Asian countries. In this study, partial major capsid protein (MCP) gene of seven Japanese and six Korean megalocytiviruses was sequenced and compared with the known megalocytiviruses to evaluate genetic variation and geographic distribution of the viruses. Comparison of MCP gene nucleotide sequences revealed sequence identity of 92.8% or greater among these 48 isolates. A phylogenetic tree clearly revealed three clusters: genotype I including nine Japanese isolates, thirteen Korean isolates, one Chinese isolates, one Thailand isolate and one South China Sea isolate; genotype II including five freshwater fish isolates in Southeast Asian countries and Australia; and the remaining genotype III mainly consisted of flatfish isolate in Korea and China. This suggests that viruses belonging to the genotype I widely distribute among various fish species in many Asian countries. Conversely, the epidemic viruses belonged to genotype II and III are may be still locally spreading and constrained in their prevalence to the limited host fish species, i.e., genotype II viruses mainly distribute in Southeast Asian countries, whereas genotype III viruses distribute in flatfish species in Korea and China.  相似文献   

7.
Nothofagus pumilio is the dominant and almost ubiquitous tree species in mountainous environments of temperate South America. We used two types of molecular markers (cpDNA and isozymes) to evaluate the effects of the Paleogene paleogeography of Patagonia and more recent climatic oscillations of the Neogene on such cold‐tolerant species’ genetic makeup. Phylogeographic analysis on sequences of three cpDNA non‐coding regions at 85 populations yielded two latitudinally disjunct monophyletic clades north and south of c. 42°S containing 11 and three haplotypes, respectively. This indicates a long‐lasting vicariant event due to the presence of an extended open paleobasin at mid latitudes of Patagonia. Also distribution patterns of cpDNA haplotypes suggest regional spread following stepping‐stone models using pre‐Cenozoic mountains as corridors. Comparable genetic diversity measured along 41 sampled populations using seven polymorphic isozyme loci provides evidence of local persistence and spread from multiple ice‐free locations. In addition, significantly higher heterozygosity and allelic richness at high latitudes, i.e. in areas of larger glacial extent, suggest survival in large and isolated refugia. While, higher cpDNA diversity in lower latitudes reflects the complex orogeny that historically isolated northern populations, lower isozyme diversity and reduced FST values provide evidence of local glacial survival in numerous small locales. Therefore, current genetic structure of N. pumilio is the result of regional processes which took place during the Tertiary that were enhanced by contemporary local effects of drift and isolation in response to Quaternary climatic cycles.  相似文献   

8.
Fitzroya cupressoides (alerce, Cupressaceae) is a large and exceptionally long-lived conifer, endemic to a restricted area of southern Chile and neighbouring areas of Argentina. As a result of its high economic value, the species has been severely exploited for timber, and remnant populations are fragmented and often highly disturbed. The species is thought to have undergone a major range contraction during the last glaciation. In order to assess the extent of genetic variation using DNA markers within and between populations of this species, samples were obtained from throughout the natural range and analysed for random amplified polymorphic DNA (RAPD) variation. Eight 10-mer and three 15-mer primers were used to produce a total of 54 polymorphic bands. Shannon's diversity estimates were calculated to provide an estimate of the degree of variation within each population. Values varied from 0.343 to 0.636 with only the lowest value differing significantly from the others (Spop = 0.547). This indicated that there is a significant degree of variation within each population, and did not provide evidence for genetic 'bottle-neck' effects within the species. A pairwise distance measure calculated from the RAPD data was used as an input for principal coordinate (PCO) and AMOVA analyses. The first three principal coordinates of RAPD distances described 8.3, 5.9 and 5.4% of the total variance, respectively, and a degree of clustering of samples according to their geographical origin was detectable. AMOVA analysis indicated that although most of the variation (85.6%) was found within populations, a significant proportion (P < 0.002) was attributable to differences between populations. An UPGMA dendrogram constructed using phi ST values derived from AMOVA produced a pattern broadly similar to that produced by the PCO, highlighting differences between three main groups of populations within Chile: those from the northern Coastal Range, the southern Coastal Range and Central Depression, and the Andes. Populations from Argentina also emerged as significantly different from those in Chile. These results are interpreted in the context of the postglacial history of the species, and their implications for the development of conservation strategies for Fitzroya are discussed.  相似文献   

9.
The effects of dispersal ability, measured as two wing size categories (brachypterous vs. macropterous), on the distribution, abundance and body size, and on the relationships between these variables were examined in eighty-four species of carabid beetles over twenty-two sites in the northern Iberian peninsula. Geographic ranges of species (restricted to the northern Iberian peninsula vs. widespread—European or wider range) were also taken into account in the analyses because macropterous species significantly tended to exhibit wider geographic ranges than did brachypterous species. Regional distributions were wider in brachypterous-restricted and brachypterous-widespread species than in macropterous-widespread species. The three groups did not differ in abundance. Differences in regional distributions between groups may be explained by referring to a trade-off between dispersal ability and establishment ability indicated in the literature. Macropterous species would occupy relatively few sites due to a high frequency of unsuccessful colonizations. The relationships between regional distribution and abundance were positive for all the three groups, brachypterous-restricted, brachypterous-widespread and macropterous-widespread species. The regression line for the last group showed a lower elevation than those for brachypterous-restricted and brachypterous-widespread species. This fact was probably due to differences in regional distributions between groups. No relationship between abundance and body size was significant. Regressions of regional distribution on body size were positive in brachypterous-restricted and brachypterous-widespread carabids, but the relationship was not significant in macropterous-widespread carabids. These results were interpreted in terms of differences in body size–dependency of travelling velocities between flying and running carabids.  相似文献   

10.
We analysed breeding sounds of the two subspecies of South American Snipe Gallinago paraguaiae paraguaiae and Gallinago paraguaiae magellanica to determine whether they might be different species: loud vocalizations given on the ground, and the tail-generated Winnow given in aerial display. Sounds of the two taxa differ qualitatively and quantitatively. Both taxa utter two types of ground call. In G. p. paraguaiae, the calls are bouts of identical sound elements repeated rhythmically and slowly (about five elements per second (Hz)) or rapidly (about 11 Hz). One call of G. p. magellanica is qualitatively similar to those of G. p. paraguaiae but sound elements are repeated more slowly (about 3 Hz). However, its other call type differs strikingly: it is a bout of rhythmically repeated sound couplets, each containing two kinds of sound element. The Winnow of G. p. paraguaiae is a series of sound elements that gradually increase in duration and energy; by contrast, that of G. p. magellanica has two or more kinds of sound element that roughly alternate and are repeated as sets, imparting a stuttering quality. Sounds of the related Puna Snipe (Gallinago andina) resemble but differ quantitatively from those of G. p. paraguaiae. Differences in breeding sounds of G. p. paraguaiae and G. p. magellanica are strong and hold throughout their geographical range. Therefore we suggest that the two taxa be considered different species: G. paraguaiae east of the Andes in much of South America except Patagonia, and G. magellanica in central and southern Chile, Argentina east of the Andes across Patagonia, and Falklands/Malvinas.  相似文献   

11.
Abstract We tested the hypothesis that contrasting elevations select distinct growth patterns and vegetative phenology in Nothofagus pumilio, a winter deciduous tree that dominates mountain forests of Patagonia. Analysis of saplings maintained under common‐garden conditions for 4 years showed a significant decrease in shoot annual growth, leaf size, and a delay in bud‐break, and leaf expansion with increased elevation of their site of origin. Rapid gain in height seems to be advantageous at low elevation in such light‐demanding species. Lower stature high‐elevation plants have wider branching angles and greater branching ratios (number of branches/number of internodes) than low‐elevation plants. Compact growth at high elevation may be related to strong winds and irradiance. Plants from different elevations had distinct growth patterns during the common‐garden experiment. This could be of importance in Mediterranean‐climate areas characterized by highly unpredictable precipitation regimes. Also, liberation of growth‐suppressed seedlings may follow different environmental signals in low‐ and high‐habitats, which might explain such time‐dependent responses to optimal conditions under cultivation. While these greenhouse‐grown N. pumilio saplings showed heritable differences in plant architectural traits and leafing phenology, it was not clear how the genotypes characteristic of particular elevations would respond to longer growing seasons such as those predicted under global warming.  相似文献   

12.
Hybrid zones represent natural laboratories to study gene flow, divergence and the nature of species boundaries between closely related taxa. We evaluated the level and extent of hybridization between Crocodylus moreletii and Crocodylus acutus using genetic and morphological data on 300 crocodiles from 65 localities. To our knowledge, this is the first genetic study that includes the entire historic range and sympatric zone of the two species. Contrary to expectations, Bayesian admixture proportions and maximum‐likelihood estimates of hybrid indexes revealed that most sampled crocodiles were admixed and that the hybrid zone is geographically extensive, extending well beyond their historical region of sympatry. We identified a few geographically isolated, nonadmixed populations of both parental species. Hybrids do not appear to be F1s or recent backcrosses, but rather are more likely later‐generation hybrids, suggesting that hybridization has been going on for several to many generations and is mostly the result of natural processes. Crocodylus moreletii is not the sister species of C. acutus, suggesting that the hybrid zone formed from secondary contact rather than primary divergence. Nonadmixed individuals from the two species were distinguishable based on morphological characters, whereas hybrids had a complex mosaic of morphological characters that hinders identification in the wild. Very few nonadmixed C. acutus and C. moreletii populations exist in the wild. Consequently, the last nonadmixed C. moreletii populations have become critically endangered. Indeed, not only the parental species but also the naturally occurring hybrids should be considered for their potential conservation value.  相似文献   

13.
A total of 582 individuals (1,164 chromosomes) from two African, eight African-derived South American, five South American Amerindian, and three Brazilian urban populations were studied at four variable number of tandem repeat (VNTR) and two short tandem repeat (STR) hypervariable loci. These two sets of loci did not show distinct allele profiles, which might be expected if different processes promoted their molecular differentiation. The two African groups showed little difference between them, and their intrapopulational variation was similar to those obtained in the African-derived South American communities. The latter showed different degrees of interpopulation variability, despite the fact that they presented almost identical average degrees of non-African admixture. The FST single locus estimates differed in the five sets of populations, probably due to genetic drift, indicating the need to consider population structure in the evaluation of their total variability. A high interpopulational diversity was found among Amerindian populations in relation to Brazilian African-derived isolated communities. This is probably a consequence of the differences in the patterns of gene flow and genetic drift that each of these semi-isolated groups experienced. Am J Phys Anthropol 109:425–437, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

14.
Genetic variation was evaluated in the federally endangered species Abronia macrocarpa (large-fruited sand-verbena), an herbaceous perennial restricted to deep sandy soils and endemic to three counties of east-central Texas. Seven of the ten known populations were sampled and analyzed using starch gel electrophoresis of eight enzymes coded by 18 interpretable loci. Duplicate gene expression was observed for four loci, suggesting polyploid ancestry for the lineage that includes A. macrocarpa. Values for estimators of genetic polymorphism within populations (ranges: P = 38.9%-61.1%, A = 1.7-2.1, H = 0.122-0.279) exceeded average values for seed plants (P = 34.2%, A = 1.53, H = 0.113). Genotype proportions at most loci in most populations were in Hardy-Weinberg equilibrium, consistent with obligate outcrossing previously documented for this species; exceptions could be attributed to population substructure. Values of F(ST) tended to be high, ranging from 0.021 to 0.481 for individual loci (mean F(ST) = 0.272), indicating substantial divergence and limited gene flow among populations, despite their close geographic proximity. Pairwise values of Nei's genetic identity between populations ranged from 0.799 to 0.975 and tended to be influenced by geographic proximity of population pairs. Collectively, these data suggest a long history of isolation among populations that have not been subjected to bottlenecks. Isolation of A. macrocarpa populations apparently results from the disjunct occurrence of suitable habitat and perhaps has been accentuated by human disturbance.  相似文献   

15.
中国和美国大豆疫霉群体遗传结构的ISSR分析   总被引:12,自引:0,他引:12  
为探究中国和美国大豆疫霉的遗传关系, 采用简单序列重复区间扩增多态性(ISSR)技术, 对来自中国黑龙江省、福建省和美国的3个大豆疫霉地理群体的遗传多样性进行了分析。通过13个ISSR引物对供试的111株大豆疫霉菌株进行扩增, 共得到102个ISSR条带, 其中多态性条带为88个, 占86%。遗传变异分析表明, 美国群体具有更高的遗传变异度; Nei’s 遗传相似性和主成分分析均显示, 中国福建群体与美国群体间的遗传相似性最高, 而福建群体与黑龙江群体间遗传相似性最低; 聚类分析显示, 供试菌株在88%的相似性水平上可区分为7个聚类组, 且美国群体分布于更多的聚类组中; Shannon-Wiener多样性指数也表明美国群体的遗传多样性最为丰富。综合分析表明, 本研究的结果不支持关于美国的大豆疫霉可能来源于中国的推测。  相似文献   

16.
Aim To evaluate how spatial variation of species richness in different bird orders responds to environmental gradients and determine which order level trait best predicts these relationships. Location South America. Methods A canonical correlation analysis was performed between the species richness in each of 17 bird orders and eight environmental variables in 374, 220 × 220 km cells. Loadings associated with the first two canonical variables were regressed against six order‐level predictors, including diversification level (number of species in each order), body size, median geographical range size and characteristics included in the model to control Type I error rates (the phylogenetic relationship among orders and levels of local‐scale spatial autocorrelation). Results Richness patterns of 14 bird orders were highly correlated with the first canonical axis, indicating that most orders respond similarly to energy‐water gradients (primarily actual evapotranspiration, minimum temperature and potential evapotranspiration). In contrast, species richness within Trochiliformes, Apodiformes and Galliformes were also correlated with the second canonical variable, representing measures of mesoscale climatic variation (range in elevation within cells, minimum temperature, and the interaction term between them) and landcover (habitat diversity). We also found that total diversification within orders was the best predictor of the loadings associated with the first canonical axis, whereas body size of each order best predicted loadings on the second axis. Conclusion Our results broadly support climatic‐related hypotheses as explanations for spatial variation in species richness of different orders. However, both historical (order‐specific variation in speciation rates) and ecological (dispersal of species that evolved by independent processes into areas amenable to birds) processes can explain the relationship between order level traits, such as body size and diversification level, and magnitude of response to current environment, furnishing then guidelines for a further and deeper understanding of broad‐scale diversity gradients.  相似文献   

17.
赵爽  乐小亮  章群 《生态科学》2009,28(6):528-531
测定了珠江和韩江3个群体21尾赤眼鳟线粒体细胞色素b基因1 029bp序列片段,发现11个单倍型,14个变异位点。韩江群体单倍型多样度h(0.464)和核苷酸多样度π(0.000 97)较低,珠江水系左江和郁江群体较高(h=0.929-1,π=0.023 6-0.036 9)。在邻接树上不同地理来源的个体混杂,没有明显的谱系结构和地理聚群。Fst值和AMOVA分析亦显示珠江与韩江群体之间没有显著遗传分化。单倍型网络图呈星状结构,中性检测Tajima's D和Fu's Fs均为显著负值,核苷酸不对称分布分析呈单峰模式,说明华南赤眼鳟群体可能在晚更新世(164-66KaBP)曾经历过种群的快速扩张。  相似文献   

18.
The genus Myotis (Vespertilionidae, Myotinae) comprises a diverse group of small to large-sized vespertilionid bats that present a worldwide distribution. Twelve South American species are currently recognized. In this paper we evaluate the morphological and morphometric variation observed in South American populations of the most widespread species, Myotis nigricans. Against this background, two forms can be morphologically distinguished from M. nigricans and other known South American species. We describe these new species, documenting their diagnostic external and cranial characters by comparing them to other sympatric and cryptic species of South American Myotis. In addition, we provide an emended diagnosis of Myotis nigricans.  相似文献   

19.
Understanding the extent and distribution of genetic diversity within a species is essential for the development of effective conservation strategies. The objective of this study was to assess genetic variation using amplified fragment length polymorphisms (AFLP) in two species of the tropical legume genus Stylosanthes Sw. Annual, S. humilis (2n = 20) and perennial, S. viscosa (2n = 20) are found throughout tropical America, and are sympatric for much of their range of distribution. One hundred and eleven accessions, covering a wide geographical range, were selected for AFLP analysis. Binary data matrices derived from DNA banding patterns were analysed using the software programs NTSYS-PC and ARLEQUIN. Several accessions were found to be misidentified. Of the S. humilis accessions, the overall average similarity value was (0.72) slightly higher than the value obtained for S. viscosa (0.67). Cluster analysis and principal coordinate analysis grouped accessions from both species by geographical origin, with a few exceptions. Analysis of molecular variance (AMOVA) in S. humilis revealed 59.4% of the variation among groups formed from the cluster analysis. This was highly significant (P < 0.001). For S. viscosa AMOVA also revealed more variation among than within groups (66.5%). This was also highly significant (P < 0.001). The majority of accessions of both species conserved ex situ are of Brazilian and Venezuelan origin. This study has identified areas in Central America and Mexico for which novel genetic variation may be found and where conservation activities should be focused.  相似文献   

20.
Plants exhibit a great variety of types of clonal growth. Moderate variation in clonal traits often exists even within species. The consequences of these variations for species interaction are of great interests to ecologists. In this paper, I address the small-leaved (phalanx) to large-leaved (guerrilla) variation in white clover ( Trifolium repens ), and discuss its consequences for species and genotype coexistence. I also address the clonal and sexual resource allocation variants within the large-leaved type. Small-leaved and large-leaved genotypes differ in various aspects of clonal growth. The large-leaved genotype displays greater phenotypic plasticity but is less physiologically integrated than the small-leaved genotype. We examined the consequences in a grazed sward, where white clover and zoysia grass coexist. In this sward, white clover is patchily distributed. We first tested the hypothesis that the large-leaved genotype is more advantageous in growth than the small-leaved genotype. Results from both common garden and competition experiments supported the hypothesis. Second, we tested the hypothesis that within large-leaved plants, the clonal subtype (which invests more resources to stolons but less in flower heads than the sexual one) is more advantageous than the sexual one because it is more competitive. This hypothesis was rejected. Both subtypes coexisted in the sward. This is probably because the sexual subtype is superior for interpatch migration than the clonal one. Both subtypes differ in advantages they offer for between-patch and within-patch processes, which promotes their coexistence. Finally, field monitoring of the behavior of a large-leaved clone is described. This monitoring was conducted in a moderately grazed sward, where microenvironmental heterogeneity is extremely high in time and space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号