首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the growth of Bdellovibrio bacteriovorus on Pseudomonas putida or Escherichia coli in either 10(-3)m tris(hydroxymethyl)aminomethane or in dilute nutrient broth, the host deoxyribonucleic acid (DNA) was rapidly degraded, and by 30 to 60 min after the initiation of the bdellovibrio development cycle essentially all host DNA became nonbandable in CsCl gradients. At this stage the host DNA degradation products were nondiffusable, and there was no appreciable pool of low-molecular-weight (cold acid soluble) DNA fragments in the cells or in the suspending medium. Bdellovibrio DNA synthesis occurred only after degradation of host DNA to a nonbandable form was complete. The synthesis occurred in a continuous fashion with P. putida as the host and in two separate periods with E. coli as host. By using E. coli containing a (3)H-thymidine label, it was shown that 73%, on the average, of the thymine residues of host DNA were incorporated into bdellovibrio DNA when E. coli was the only source of nutrient. In the presence of dilute nutrient broth, the host cells still served as the major source of precursors for bdellovibrio DNA synthesis, with only 20% of the precursors arising from the exogenous nutrients. The data indicate an efficient and controlled utilization of host DNA by the bdellovibrio. The host DNA is apparently degraded early in the developmental cycle to oligonucleotides of intermediate molecular weight from which the biosynthetic monomers are generated only as they become needed for bdellovibrio DNA synthesis.  相似文献   

2.
Parasites exert numerous effects upon their hosts, including physiological and metabolic changes that can in turn influence various aspects of host life history. Using flow‐through respirometry, we investigated how infection intensity of an ectoparasitic mite (Macrocheles subbadius) affects the respiratory rate (CO2 production) of its host Drosophila nigrospiracula. Mean fly respiratory rate increased with infection intensity with the strongest effect, a 40% increase relative to uninfected controls, occurring with three mites attached. We also verified the causal relationship between elevated respiration rate and mite attachment by examining changes in host respiration before and after mite exposure. We found that the rate of CO2 production increased by 11% for individual flies following parasite attachment. Fly locomotor activity was not significantly different between infected and uninfected individuals. Metabolic rate of hosts increased as a result of infection in an intensity dependent manner and was not simply due to changes in host activity. These results demonstrate that parasites can have a significant influence on the energy requirements of their host, which may account for the parasite‐mediated loss in host fitness.  相似文献   

3.
The respiratory rate of the roots of mustard (Brassica cam-pestris L.) and tomato (Lycopersicum esculentum Mill.) serving as hosts for the total root parasites Orobanche aegyptiaca Pers. and O.cernua Loefll. was measured using Warburg manometric technique. At the same time determinations were made of the respiration of the apical, basal and root regions of the parasites. The effects of sodium fluoride, malonic acid, sodium azide and DNP (2,4-dinitrophenol) on the rate of respiration of the host roots as well as of the parasites were studied. The Orobanche infection results in a marked increase in the respiratory rate near the host-parasite contact region. The damaging effect of infection seems to be due mainly to a continuous flow of water, minerals and metabolites from host to parasite. The haustorial invasion creates an obstruction in the translocation of metabolites. The respiration rate is lower in Orobanche than in the host, which might be related to its slower growth rate, inefficient oxidative processes and an escaping of certain energy-requiring interconversion processes. Roots of O. aegyptiaca are more well-developed and have higher rate of respiration. They can absorb more water and minerals from the soil. This fact might be connected with the specificity of the two species. NaF and malonic acid inhibit the respiration to a similar extent in healthy and infected roots. This indicates that the pathway of respiration does not change materially after infection. The EMP and Krebs cycle seem to operate at a lower intensity in Orobanche, which is proved by the lower inhibition of the respiration as compared to in the host. Azide causes a stronger reduction of the respiration in infected than in healthy roots. It would imply that the infection stimulates the activity of metal containing oxidases. The weaker inhibition of the respiration in Orobanche tissues indicates a mediation of other enzymes in the oxidation processes than in the host. The respiration is less stimulated by DNP in infected than in healthy roots. Contrary to the general effect of DNP, this substance decreases the O2 uptake in the parasite tissues. This fact may be explained by the occurrence of exceptionally high amounts of endogenous phenolic compounds and an insufficient production of ATP in the parasite.  相似文献   

4.
Encephalitozoon cuniculi is a protozoan parasite that has been implicated recently as a cause of opportunistic infection in immunocompromised individuals. Protective immunity in the normal host is T cell-dependent. In the present study, the role of individual T cell subtypes in immunity against this parasite has been studied using gene knockout mice. Whereas CD4-/- animals resolved the infection, mice lacking CD8+ T cells or perforin gene succumbed to parasite challenge. The data obtained in these studies suggest that E. cuniculi infection induces a strong and early CD8+ T response that is important for host protection. The CD8+ T cell-mediated protection depends upon the CTL activity of this cell subset, as the host is rendered susceptible to infection in the absence of this function. This is the first report in which a strong dependence upon the cytolytic activity of host CD8+ T cells has been shown to be important in a parasite infection.  相似文献   

5.
6.
The effects of Orobanche infection on the growth and mineral compostition of the host were studied. Parallel observations were made in host and parasite. Orobanche infection reduces the height of main shoot, the length of root, the number of branches, and the number and total area leaves per plant. Consequently the fresh and dry weight of the host is also decreased. Infection affects NAR and LAR only slightly but reduces RGR and RLGR at a later period of infection. The retardation in the growth of host seems to be due mainly to a continuous extraction of metabolites and inorganic nutrients. Infection increases the nitrogen, calcium and magnesium content in the host, especially in the leaves. This fact is connected with the retarded growth in the host. The process of absorption is probably not changed. The phosphorus and potassium contents diminish in the infected host, a fact related to the higher translocation to the parasite. The Orobanche plants grow faster during early stages and accumulate 88 % of total dry matter before flowering, The growth stages of Orobanche do not coincide with those of the host suggesting that the parasite is capable of synthesizing its own growth substances. Studies with 32P show that the flow of minerals is mainly in the direction from host to parasite. The major part of the requirement of the parasite is met by the host. Orobanche maintains a higher phosphorus and potassium content in its tissues than the host, while the nitrogen, calcium and magnesium content is lower.  相似文献   

7.
Within-species genetic variation is a potent factor influencing between-species interactions and community-level structure. Species of the hemi-parasitic plant genus Rhinanthus act as ecosystem engineers, significantly altering above- and below-ground community structure in grasslands. Here, we show the importance of genotypic variation within a single host species (barley-Hordeum vulgare), and population-level variation among two species of parasite (Rhinanthus minor and Rhinanthus angustifolius) on the outcome of parasite infection for both partners. We measured host fitness (number of seeds) and calculated parasite virulence as the difference in seed set between infected and uninfected hosts (the inverse of host tolerance). Virulence was determined by genetic variation within the host species and among the parasite species, but R. angustifolius was consistently more virulent than R. minor. The most tolerant host had the lowest inherent fitness and did not gain a fitness advantage over other infected hosts. We measured parasite size as a proxy for transmission ability (ability to infect further hosts) and host resistance. Parasite size depended on the specific combination of host genotype, parasite species and parasite population, and no species was consistently larger. We demonstrate that the outcome of infection by Rhinanthus depends not only on the host species, but also on the underlying genetics of both host and parasite. Thus, genetic variations within host and parasite are probably essential components of the ecosystem-altering effects of Rhinanthus.  相似文献   

8.
Almost all macroparasites show over‐dispersed infections within natural host populations such that most parasites are distributed among a few heavily‐infected individuals. Despite the importance of parasite aggregation for understanding system stability, the potential for population regulation, and super‐spreading events, many questions persist about its underlying drivers. Theoretically, aggregation results from heterogeneity in host exposure, resistance, and tolerance. However, few studies have examined how host spatial arrangement – which likely affects both parasite encounter and density‐dependent interactions – influences infection and dispersion, representing a critical gap in our current knowledge regarding the possible drivers of parasite aggregation. Using field data from over 165 ponds and 8000 hosts, we evaluated how the spatial clustering of amphibian larvae within ponds 1) varied among different amphibian species, and 2), affected the distribution of parasites within the host population using Taylor's power law. A complementary mesocosm experiment used field‐guided manipulations of the spatial arrangement of larval amphibians to create a gradient in host clustering while controlling host density, thereby testing for spatial effects on both infection success and aggregation by three different trematode species. Our field data indicated that larval amphibians exhibited significant spatial clustering that was well captured by Taylor's power law (R2 0.92 to 0.97 for different host species), but the residual variation only weakly correlated with observed patterns of trematode parasite over‐dispersion. Correspondingly, experimental manipulation of host clustering had no effects on parasite infection success or the degree of parasite aggregation among cages or mesocosms. Given the importance of parasite over‐dispersion for host populations and disease dynamics, we advocate for further investigations of host and parasite spatial aggregation, particularly studies that incorporate and/or control for heterogeneity in exposure and susceptibility.  相似文献   

9.
Parasitic interaction of Bdellovibrio bacteriovorus with other bacteria   总被引:20,自引:14,他引:6  
Starr, Mortimer P. (University of California, Davis), and Nancy L. Baigent. Parasitic interaction of Bdellovibrio bacteriovorus with other bacteria. J. Bacteriol. 91:2006-2017. 1966.-The interactions of the predatory parasite, Bdellovibrio bacteriovorus, with Erwinia amylovora, Pseudomonas tabaci, and P. phaseolicola were examined by means of phase-contrast and electron microscopy. Attachment of the bdellovibrio to the host cell is apparently initially reversible; detachment occurs infrequently in the later stages. Formation of a pore in the host cell wall is followed by disorganization of the host nucleus and of the murein layer of the host cell wall. Short host cells become totally spheroplasted; the longer rods of Pseudomonas usually are partially spheroplasted. The parasite completely invades the host cell, and the cell contents of the host are digested. Bdellovibrios living as parasites inside the host increase considerably in size in comparison with those which have been living away from the host for a time. When the host protoplast is entirely lysed, the parasites leave the disintegrating "ghosted" cell envelope, and are ready to reinitiate the parasitic cycle. The time taken for a mature Bdellovibrio cell to complete the parasitic cycle may vary depending on the length of time the parasite has been away from its hosts.  相似文献   

10.
Tritrichomonas foetus is the cause of trichomoniasis in cattle. Severe infection is often associated with heavy neutrophil and macrophage accumulation, although it is not known how this response protects during early parasite colonization. The goal of this study was to examine the effects of an early host response upon initial T. foetus colonization within the murine reproductive tract. Mice depleted of neutrophils before T. foetus infection had a significantly higher parasite burden within the reproductive tract compared with mock-depleted control mice. Additionally, gp91(phox-/-)/ iNOS(-/-), and iNOS(-/-) mice had substantially larger parasite burdens than C57BL/6 control mice, whereas gp91l(Phox-/-) mice had similar parasite burden to C57BL/6 control mice. Interestingly, phorbol 12-myristate 13-acetate-stimulated neutrophils and macrophages isolated from all groups of mice were unable to kill T. foetus in vitro. However, macrophages isolated from gp91l(phox-/-) and C57BL/6 mice stimulated with interferon-gamma and lipopolysaccharide were able to kill T. foetus in vitro, whereas macrophages isolated from gp91(phox(-/-)/ iNOS(-/-) and iNOS(-/-) mice were unable to kill T. foetus, suggesting the ability of macrophages to produce reactive nitrogen species but not reactive oxygen species (ROS) is critical for parasite killing during early infection in vivo and in vitro. Additionally, neutrophils seem to control early dissemination of T. foetus throughout the reproductive tract, although production of ROS is not critical for this process.  相似文献   

11.
Models of virulence evolution for horizontally transmitted parasites often assume that transmission rate (the probability that an infected host infects a susceptible host) and virulence (the increase in host mortality due to infection) are positively correlated, because higher rates of production of propagules may cause more damages to the host. However, empirical support for this assumption is scant and limited to microparasites. To fill this gap, we explored the relationships between parasite life history and virulence in the salmon louse, Lepeophtheirus salmonis, a horizontally transmitted copepod ectoparasite on Atlantic salmon Salmo salar. In the laboratory, we infected juvenile salmon hosts with equal doses of infective L. salmonis larvae and monitored parasite age at first reproduction, parasite fecundity, area of damage caused on the skin of the host, and host weight and length gain. We found that earlier onset of parasite reproduction was associated with higher parasite fecundity. Moreover, higher parasite fecundity (a proxy for transmission rate, as infection probability increases with higher numbers of parasite larvae released to the water) was associated with lower host weight gain (correlated with lower survival in juvenile salmon), supporting the presence of a virulence–transmission trade‐off. Our results are relevant in the context of increasing intensive farming, where frequent anti‐parasite drug use and increased host density may have selected for faster production of parasite transmission stages, via earlier reproduction and increased early fecundity. Our study highlights that salmon lice, therefore, are a good model for studying how human activity may affect the evolution of parasite virulence.  相似文献   

12.
Intermediate host exploitation by parasites is presumably constrained by the need to maintain host viability until transmission occurs. The relationship between parasitism and host survival, though, likely varies as the energetic requirements of parasites change during ontogeny. An experimental infection of an acanthocephalan (Acanthocephalus lucii) in its isopod intermediate host (Asellus aquaticus) was conducted to investigate host survival and growth throughout the course of parasite development. Individual isopods were infected by exposure to fish feces containing parasite eggs. Isopods exposed to A. lucii had reduced survival, but only early in the infection. Mean infection intensity was high relative to natural levels, but host mortality was not intensity dependent. Similarly, a group of naturally infected isopods harboring multiple cystacanths did not have lower survival than singly infected isopods. Isopods that were not exposed to the parasite exhibited sexual differences in survival and molting, but these patterns were reversed or absent in exposed isopods, possibly as a consequence of castration. Further, exposed isopods seemed to have accelerated molting relative to unexposed controls. Infection had no apparent effect on isopod growth. The effects of A. lucii on isopod survival and growth undermine common assumptions concerning parasite-induced host mortality and the resource constraints experienced by developing parasites.  相似文献   

13.
14.
15.
While the host immune system is often considered the most important physiological mechanism against parasites, precontact mechanisms determining exposure to parasites may also affect infection dynamics. For instance, chemical cues released by hosts can attract parasite transmission stages. We used the freshwater snail Lymnaea stagnalis and its trematode parasite Echinoparyphium aconiatum to examine the role of host chemical attractiveness, physiological condition, and immune function in determining its susceptibility to infection. We assessed host attractiveness through parasite chemo‐orientation behavior; physiological condition through host body size, food consumption, and respiration rate; and immune function through two immune parameters (phenoloxidase‐like and antibacterial activity of hemolymph) at an individual level. We found that, although snails showed high variation in chemical attractiveness to E. aconiatum cercariae, this did not determine their overall susceptibility to infection. This was because large body size increased attractiveness, but also increased metabolic activity that reduced overall susceptibility. High metabolic rate indicates fast physiological processes, including immune activity. The examined immune traits, however, showed no association with susceptibility to infection. Our results indicate that postcontact mechanisms were more likely to determine snail susceptibility to infection than variation in attractiveness to parasites. These may include localized immune responses in the target tissue of the parasite. The lack of a relationship between food consumption and attractiveness to parasites contradicts earlier findings that show food deprivation reducing snail attractiveness. This suggests that, although variation in resource level over space and time can alter infection dynamics, variation in chemical attractiveness may not contribute to parasite‐induced fitness variation within populations when individuals experience similar environmental conditions.  相似文献   

16.
Ten bacteriophages that attack and lyse saprophytic strains of Bdellovibrio bacteriovorus were isolated. Morphological, serological, and host-range studies revealed that there were four different bdellovibrio phages present among the isolates. One of the phages lysed a strain of B. bacteriovorus that requires the presence of a suitable bacterial host for growth. The phage attached to the bdellovibrio cells in the absence of the bacterial host cells; lysis occurred only in the presence of host cells. The 19 saprophytic bdellovibrio strains employed in the phage host-range studies were grouped on the basis of their susceptibility to phage lysis.  相似文献   

17.
Parasite environments are heterogeneous at different levels. The first level of variability is the host itself. The second level represents the external environment for the hosts, to which parasites may be exposed during part of their life cycle. Both levels are expected to affect parasite fitness traits. We disentangle the main and interaction effects of variation in the immediate host environment, here the diatom Asterionella formosa (variables host cell volume and host condition through herbicide pre-exposure) and variation in the external environment (variables host density and acute herbicide exposure) on three fitness traits (infection success, development time and reproductive output) of a chytrid parasite. Herbicide exposure only decreased infection success in a low host density environment. This result reinforces the hypothesis that chytrid zoospores use photosynthesis-dependent chemical cues to locate its host. At high host densities, chemotaxis becomes less relevant due to increasing chance contact rates between host and parasite, thereby following the mass-action principle in epidemiology. Theoretical support for this finding is provided by an agent-based simulation model. The immediate host environment (cell volume) substantially affected parasite reproductive output and also interacted with the external herbicide exposed environment. On the contrary, changes in the immediate host environment through herbicide pre-exposure did not increase infection success, though it had subtle effects on zoospore development time and reproductive output. This study shows that both immediate host and external environment as well as their interaction have significant effects on parasite fitness. Disentangling these effects improves our understanding of the processes underlying parasite spread and disease dynamics.  相似文献   

18.
Tolerance to parasites reduces the harm that infection causes the host (virulence). Here we investigate the evolution of parasites in response to host tolerance. We show that parasites may evolve either higher or lower within-host growth rates depending on the nature of the tolerance mechanism. If tolerance reduces virulence by a constant factor, the parasite is always selected to increase its growth rate. Alternatively, if tolerance reduces virulence in a nonlinear manner such that it is less effective at reducing the damage caused by higher growth rates, this may select for faster or slower replicating parasites. If the host is able to completely tolerate pathogen damage up to a certain replication rate, this may result in apparent commensalism, whereby infection causes no apparent virulence but the original evolution of tolerance has been costly. Tolerance tends to increase disease prevalence and may therefore lead to more, rather than less, disease-induced mortality. If the parasite is selected, even a highly efficient tolerance mechanism may result in more individuals in total dying from disease. However, the evolution of tolerance often, although not always, reduces the individual risk of dying from infection.  相似文献   

19.
The interaction between birds and haemosporidia blood parasites is a well‐used system in the study of parasite biology. However, where, when and how parasites are transmitted is often unclear and defining parasite transmission dynamics is essential because of how they influence parasite‐mediated costs to the host. In this study, we used cross‐sectional and longitudinal data taken from a collared flycatcher Ficedula albicollis population to investigate the temporal dynamics of haemosporidia parasite infection and parasite‐mediated costs to host fitness. We investigated host–parasite interactions starting at the nestling stage of the bird's life‐cycle and then followed their progress over three breeding attempts to quantify their fitness – measured as the number of offspring they produced that recruited back into the breeding population. We found that the majority of haemosporidia blood parasite infections occurred within the first year of life and that the most common parasite lineages that infected the breeding population also infected juvenile birds in the natal environment. Moreover, our findings suggest that collared flycatcher nestlings in poorer condition could be at a higher risk of haemosporidia blood parasite infection. In this study, only female and not male bird fitness was adversely affected by parasite infection and the cost of infection on female fitness depended on the timing of transmission. In conclusion, our study indicates that in collared flycatchers, early‐life is potentially important for many of the interactions with haemosporidia parasite lineages, and evidence of parasite‐mediated costs to fitness suggest that these parasites may have influenced the host population dynamics.  相似文献   

20.
Parasitic red algae grow only on other red algae and have over 120 described species. Developmental studies in red algal parasites are few, although they have shown that secondary pit connections formed between parasite and host and proposed that this was an important process in successful parasitism. Furthermore, it was recorded that the transfer of parasite nuclei by these secondary pit connections led to different host cell effects. We used developmental studies to reconstruct early stages and any host cell effects of a parasite on Vertebrata aterrima. A mitochondrial marker (cox1) and morphological observations (light and fluorescence microscopy) were used to describe this new red algal parasite as Vertebrata aterrimophila sp. nov. Early developmental stages show that a parasite spore connects via secondary pit connections with a pericentral host cell after cuticle penetration. Developmental observations revealed a unique connection cell that grows into a ‘trunk-like’ structure. Host cell transformation after infection by the parasite included apparent increases in both carbohydrate concentrations and nuclear size, as well as structural changes. Analyses of molecular phylogenies and reproductive structures indicated that the closest relative of V. aterrimophila is its host, V. aterrima. Our study shows a novel developmental parasite stage (‘trunk-like’ cell) and highlights the need for further developmental studies to investigate the range of developmental patterns and host effects in parasitic red algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号