首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endostatin, a 20 kDa C-terminal fragment of collagen XVIII, is a specific inhibitor of endothelial cell proliferation and angiogenesis. In the present study, we produced soluble and biologically active recombinant human endostatin (rhEndostatin) in Escherichia coli by expressing via fusion with solubility-promoting peptides and optimizing the expression conditions. The rhEndostatin was expressed via fusion with glutathione S-transferase (GST) and NusA protein, respectively. It revealed that NusA protein enhanced the production of soluble rhEndostatin; but GST didn’t. By optimizing the expression conditions, the production of soluble NusA-rhEndostatin fusion protein was about 50% of total cellular proteins and about 90% of the products appeared in the cellular supernatant fraction. The soluble NusA-rhEndostatin fusion protein was purified by one-step hydrophobic interaction chromatography and NusA was removed by thrombin. Then rhEndostatin was purified by affinity chromatography and gel filtration chromatography. As a result, a simple and economical purification procedure for rhEndostatin isolation was obtained. The biological activity of the rhEndostatin was demonstrated in vitro using a human vascular endothelial cells (HuVECs) proliferation assay. Our study provides a feasible and convenient approach to produce soluble and biologically active rhEndostatin.  相似文献   

2.
Summary A fusion gene (ces-hlyA s) was constructed by ligating the genetic information for the C-terminal 60 amino acids (hlyA s) ofEscherichia coli hemolysin (H1yA) to the ces gene for a cholesterol esterase/lipase (CE) from aPseudomonas species. Part (about 30 %) of the expressed fusion protein CE-H1yAs was secreted inE. coli carryinghlyB andhlyD genes. Following the insertion between the reporter gene andhlyA s of a linker sequence that contains the information for potential cleavage sites for the outer membrane protease OmpT, two different fusion proteins (PhoA-H1yAs and CE-HlyAs) were shown to be cleaved by OmpT between the two parts during H1yB/H1yD-mediated secretion. Processed PhoA and CE accumulated in the supernatant. The efficiency of cleavage by OmpT was considerably improved by increasedompT gene dose. It was further shown that OmpT preferentially recognizes potential cleavage sites within the linker sequence.  相似文献   

3.
The outer membrane protein, PagC, of Salmonella typhimurium was converted into a secreted protein by linking the 61-amino-acid long, C-terminal signal sequence of the E. coli hemolysin protein (HlyAS) to the mature PagC peptide. This PagC-HlyAS fusion protein was expressed and efficiently secreted into the culture supernatant by E. coli upon complementation with the hemolysin secretion proteins HlyB and HlyD. Polyclonal antibodies raised against this fusion protein not only recognized PagC in the membrane fraction of all salmonellae by Western blotting, but also reacted with proteins of smaller size in other gram-negative bacteria tested. A monoclonal antibody against the PagC-HlyAS fusion protein recognized only PagC in membrane fractions. The antibody-binding domain was determined using synthetic peptides derived from specific PagC domains. Sera from Salmonella-infected human patients and from a rabbit infected with S. typhimurium did not react with PagC in immunoblots, suggesting that PagC may not be recognized as a major antigen by the humoral immune system. Received: 16 August 1995/Received revision: 6 November 1995/Accepted: 10 November 1995  相似文献   

4.
One challenge in biotechnology industry is to produce recombinant proteins with prolonged serum half-life. One strategy for enhancing the serum half-life of proteins includes increasing the molecular weight of the protein of interest by fusion to the Fc part of an antibody. In this context, we have expressed a homodimer fusion protein in CHO cells which consists of two identical polypeptide chains, in which our target protein, recombinant human erythropoietin (rhEpo), is N-terminally linked with the Fc part of a human IgG1 molecule. In the present study, culture supernatant of a stable clone was collected and purified by affinity chromatography prior characterization. We emphasized product quality aspects regarding the fusion protein itself and in addition, post-translational characterization of the subunits in comparison to human antibodies and rhEpo. However, overproduction of recombinant proteins in mammalian cells is well established, analysis of product quality of complex products for different purposes, such as product specification, purification issues, batch to batch consistency and therapeutical consequences, is required. Besides product quantification by ELISA, N-acetylneuraminic acid quantification in microtiterplates, quantitative isoform pattern and entire glycan profiling was performed. By using these techniques for the characterization of the recombinant human Epo-Fc (rhEpo-Fc) molecule itself and furthermore, for the separate characterization of both subunits, we could clearly show that no significant differences in the core glycan structures compared to rhEpo and human antibody N-glycans were found. The direct comparison with other rhEpo-Fc fusion proteins failed, because no appropriate data were found in the literature.  相似文献   

5.
There are many proteomic applications that require large collections of purified protein, but parallel production of large numbers of different proteins remains a very challenging task. To help meet the needs of the scientific community, we have developed a human protein production pipeline. Using high‐throughput (HT) methods, we transferred the genes of 31 full‐length proteins into three expression vectors, and expressed the collection as N‐terminal HaloTag fusion proteins in Escherichia coli and two commercial cell‐free (CF) systems, wheat germ extract (WGE) and HeLa cell extract (HCE). Expression was assessed by labeling the fusion proteins specifically and covalently with a fluorescent HaloTag ligand and detecting its fluorescence on a LabChip® GX microfluidic capillary gel electrophoresis instrument. This automated, HT assay provided both qualitative and quantitative assessment of recombinant protein. E. coli was only capable of expressing 20% of the test collection in the supernatant fraction with ≥20 μg yields, whereas CF systems had ≥83% success rates. We purified expressed proteins using an automated HaloTag purification method. We purified 20, 33, and 42% of the test collection from E. coli, WGE, and HCE, respectively, with yields ≥1 μg and ≥90% purity. Based on these observations, we have developed a triage strategy for producing full‐length human proteins in these three expression systems.  相似文献   

6.
Two kinds of neutral protease activities in lymph nodes from Lewis rats with acute experimental allergic encephalomyelitis (EAE) have been separated and partially purified and characterized. A soluble enzyme preparation enriched by gel filtration and ion-exchange chromatography hydrolyzes myelin basic protein, polylysine, and other basic proteins with an optimum pH at 6.0–6.5. It is inhibited byp-chloromercuribenzoate, and thus appears to be a mixture of thiol proteases. Another fraction containing proteolytic enzyme activity is strongly bound to the insoluble lymph node residue, and it also hydrolyzes myelin basic protein and histone, but not polylysine. It has a pH optimum above 7.5, is inhibited by phenylmethylsulfonyl fluoride, thus resembling elastase, but does not hydrolyze elastin-Congo red. The insoluble enzyme preparation hydrolyzes basic protein to 4–5 peptides in a pattern on polyacrylamide gels resembling that of the hydrolysis of basic protein by whole lymphocytes; the soluble enzyme mixture produces small fragments not retained on gels. Lymphocytes are a major component of the cells inflitrating the nervous system in experimental allergic encephalomyelitis, and neutral proteases contained in these cells may contribute to the degradation of myelin, especially of the basic protein.  相似文献   

7.
G protein-coupled receptors (GPCRs) are critical players in tumor growth and progression. The redundant roles of GPCRs in tumor development confound effective treatment; therefore, targeting a single common signaling component downstream of these receptors may be efficacious. GPCRs transmit signals through heterotrimeric G proteins composed of Gα and Gβγ subunits. Hyperactive Gαs signaling can mediate tumor progression in some tissues; however, recent work in medulloblastoma and basal cell carcinoma revealed that Gαs can also function as a tumor suppressor in neoplasms derived from ectoderm cells including neural and epidermal stem/progenitor cells. In these stem-cell compartments, signaling through Gαs suppresses self-renewal by inhibiting the Sonic Hedgehog (SHH) and Hippo pathways. The loss of GNAS, which encodes Gαs, leads to activation of these pathways, over-proliferation of progenitor cells, and tumor formation. Gαs activates the cAMP-dependent protein kinase A (PKA) signaling pathway and inhibits activation of SHH effectors Smoothened-Gli. In addition, Gαs-cAMP-PKA activation negatively regulates the Hippo pathway by blocking the NF2-LATS1/2-Yap signaling. In this review, we will address the novel function of the signaling network regulated by Gαs in suppression of SHH-driven tumorigenesis and the therapeutic approaches that can be envisioned to harness this pathway to inhibit tumor growth and progression.  相似文献   

8.
Summary By means of cell-free extracts (supernatant III: crude enzyme, precipitate II: cell debris and precipitate III: microsomal fraction) fromAeromonas hydrophila var. 24B andPseudomonas pseudomallei 13NA,p-aminoazobenzene was effectively degraded. Aniline andp-phenylenediamine were detected in the degradation products. No degradation ofp-aminoazobenzene was found in the supernatant I (extra-cellular enzyme fraction). These results clearly show that thep-aminoazobenzene degradation activity was found in the supernatant III and the precipitate II, III.  相似文献   

9.
Cryptococcus neoformans is rich in polysaccharides of the cell wall and capsule. Dectin‐2 recognizes high‐mannose polysaccharides and plays a central role in the immune response to fungal pathogens. Previously, we demonstrated Dectin‐2 was involved in the activation of dendritic cells upon stimulation with C. neoformans, suggesting the existence of a ligand recognized by Dectin‐2. In the present study, we examined the cell wall structures of C. neoformans contributing to the Dectin‐2‐mediated activation of immune cells. In a NFAT‐GFP reporter assay of the reported cells expressing Dectin‐2, the lysates, but not the whole yeast cells, of an acapsular strain of C. neoformans (Cap67) delivered Dectin‐2‐mediated signaling. This activity was detected in the supernatant of β‐glucanase‐treated Cap67 and more strongly in the semi‐purified polysaccharides of this supernatant using ConA‐affinity chromatography (ConA‐bound fraction), in which a large amount of saccharides, but not protein, were detected. Treatment of this supernatant with periodic acid and the addition of excessive mannose, but not glucose or galactose, strongly inhibited this activity. The ConA‐bound fraction of the β‐glucanase‐treated Cap67 supernatant was bound to Dectin‐2‐Fc fusion protein in a dose‐dependent manner and strongly induced the production of interleukin‐12p40 and tumour necrosis factor‐α by dendritic cells; this was abrogated under the Dectin‐2‐deficient condition. Finally, 98 kDa mannoprotein (MP98) derived from C. neoformans showed activation of the reporter cells expressing Dectin‐2. These results suggested that a ligand with mannose moieties may exist in the cell walls and play a critical role in the activation of dendritic cells during infection with C. neoformans.  相似文献   

10.
Summary Vegetative incompatibility is a lethal reaction that destroys the heterokaryotic cells formed by the fusion of hyphae of non-isogenic strains in many fungi. That incompatibility is genetically determined is well known but the function of the genes triggering this rapid cell death is not. The two allelic incompatibility genes, s and S, of the fungus Podospora anserina were characterized. Both encode 30 kDa polypeptides, which differ by 14 amino acids between the two genes. These two proteins are responsible for the incompatibility reaction that results when cells containing s and S genes fuse. Inactivation of the s or S gene by disruption suppresses incompatibility but does not affect the growth or the sexual cycle of the mutant strains. This suggests that these incompatibility genes have no essential function in the life cycle of the fungus.  相似文献   

11.
Summary In order to produce biologically active 1,6-anhydro-muropeptides in large amounts by enzymatic degradation of isolated bacterial murein polymer highly specific periplasmic murein-metabolizing enzymes from Escherichia coli are made available. The genes slt, dacB, and mepA, encoding the soluble lytic transglycosylase (Slt), the penicillin-sensitive DD-endopeptidase (PBP4), and the penicillin-insensitive murein endopeptidase A (MepA), were independently fused to the N-terminal encoding sequence of staphylococcal protein A (SpA) under control of the temperature-inducible phage p R promoter. The SpA fusion proteins were stably over-produced at high levels in E. coli upon temperature induction at 42°C and account for 3% (5 mg SpASlt/l culture), 3% (5 mg SpAPBP4/l culture), and 0.3% (0.5 mg SpAMepA/l culture) of total protein. The SpA fusion proteins, immobilized on IgG Sepharose, are proteolytically sensitive, in vitro, resulting in complete degradation of the SpA portion of the fusion proteins and release of the murein hydrolases in intact and enzymatically active form into the supernatant. Proteolytic degradation could be prevented by p-hydroxymercuribenzoic acid (PHMB) or ethylenediaminetetraacetate (EDTA) suggesting the involvement of the periplasmic protease Pi from E. coli. The immobilized fusion proteins were enzymatically active and could be used for the batch production of biologically active 1,6-anhydro-muropeptides, which were successively separated on HPLC. Isolated murein polymer was degraded quantitatively to monomeric 1,6-anhydro-muropeptides when immunoglobulin G (IgG)-SpASlt was used in combination with IgG-SpAMepA. A combination of IgG-SpASlt with IgG-SpAPBP4 left the 1,6-anhydro-dimers and oligomers being cross-linked via an LD-peptide bond (m-DAP-m-DAP) uncleaved. Correspondence to: W. Keck  相似文献   

12.
L. Donovani promastigotes were grown to late-log and 3-day stationary phase to determine the level of protein tyrosine phosphatase activity in crude extracts and in fractions following gel filtration column chromatography. Over 90% of the activity was soluble in a low salt extraction buffer in both phases of growth. Several peaks of activity were resolved following gel filtration of the crude extracts indicating that multiple tyrosine phosphatases are present in these cells. Tyrosine phosphatase activity was lower in 3-day stationary than in late log-phase cells and a reduction in the major peak of activity, eluting in a gel fraction corresponding to an M r of approximately 168kDa, was observed.In vivo tyrosine phosphorylation was revealed by Western blot analysis. The degree of phosphorylation of at least two proteins differed in cells obtained from late log phase cultures as compared with 3-day stationary phase cultures. These observations indicate that changes in the balance between tyrosine phosphorylation and dephosphorylation occur with increasing culture age.Abbreviations MBP myelin basic protein - PMSF phenyl-methanesulfonylfluoride - PTP protein tyrosine phosphatase - RCML reduced, carboxyamidomethylated, maleylated lysozyme - YINAS Tyr-Ile-Asn-Ala-Ser  相似文献   

13.
14.
15.
Using a pair of congenic strains of mice differing only at the Mls haplotype (Mls locus and closely linked genes), BALB/c (Mls b ) and BALB.D2-Mls a , we have compared the in vitro proliferative responses of M1sb lymphocytes to M1sa antigens presented on either lymph node cells (LNC) or peritoneal adherent cells (PAC). Results showed that M1sa-PAC are stronger stimulators than M1sa-LNC, and furthermore, that the supernatant from M1sa-PAC may be effective in eliciting a lymphocyte proliferative response. The proliferation in response to PAC supernatant is partially due to activation by nonspecific factor(s); however, the response in the presence of M1sa incompatible PAC supernatant is about three times greater than the response obtained in the presence of syngeneic M1sb-PAC supernatant, suggesting an additional stimulation by soluble M1sa antigens. Contrasting with the ability of PAC-supernatant to stimulate a primary proliferative response in vitro, the in vivo immunization of Mlsb mice with M1sa-PAC supernatant abrogates the specific proliferative response in subsequent one-way mixed lymphocyte cultures. This abrogation of the specific response is comparable to that observed after immunization with intact M1sa peritoneal or spleen cells, although in the latter case the anti-H-2 proliferative response is also decreased, regardless of whether the H-2 incompatible stimulating cells express an additional incompatibility for M1sa. The proliferation of untreated, but not of M1sa-immunized BALB/c LNC, is stronger in cultures with DBA/2 stimulating cells (incompatible for M1sa and other non-H-2 antigens) than in cultures with BALBM-Mls a cells (incompatible for M1sa alone), and is comparable in intensity to that activated by H-2 incompatibility. We conclude that M1sa antigens are more efficiently recognized by unprimed helper T cells when presented on PAC than when presented on LNC. In the primary proliferative response, the effects of M1sa and other non-H-2 antigens may be cumulative. In vivo immunization against M1sa antigens results in suppression of the specific proliferative response and, to a certain extent, of the nonspecific proliferative response (directed against both H-2 and other non-H-2 antigens). Since M1sa antigens are obtainable in soluble form, their physicochemical purification can now be envisaged.  相似文献   

16.
Aminopeptidases can selectively catalyze the cleavage of the N-terminal amino acid residues from peptides and proteins. Bacillus subtilis aminopeptidase (BSAP) is most active toward p-nitroanilides (pNAs) derivatives of Leu, Arg, and Lys. The BSAP with broad substrate specificity is expected to improve its application. Based on an analysis of the predicted structure of BSAP, four residues (Leu 370, Asn 385, Ile 387, and Val 396) located in the substrate binding region were selected for saturation mutagenesis. The hydrolytic activity toward different aminoacyl-pNAs of each mutant BSAP in the culture supernatant was measured. Although the mutations resulted in a decrease of hydrolytic activity toward Leu-pNA, N385L BSAP exhibited higher hydrolytic activities toward Lys-pNA (2.2-fold) and Ile-pNA (9.1-fold) than wild-type BSAP. Three mutant enzymes (I387A, I387C and I387S BSAPs) specially hydrolyzed Phe-pNA, which was undetectable in wild-type BSAP. Among these mutant BSAPs, N385L and I387A BSAPs were selected for further characterized and used for protein hydrolysis application. Both of N385L and I387A BSAPs showed higher hydrolysis efficiency than the wild-type BASP and a combination of the wild-type and N385L and I387A BSAPs exhibited the highest hydrolysis efficiency for protein hydrolysis. This study will greatly facilitate studies aimed on change the substrate specificity and our results obtained here should be useful for BSAP application in food industry.  相似文献   

17.
Summary The FhuA protein (formerly TonA) is located in the outer membrane of Escherichia coli K12. Fusions between fhuA and phoA genes were constructed. They determined proteins containing a truncated but still active alkaline phosphatase of constant size and a variable FhuA portion which ranged from 11%–90% of the mature FhuA protein. The fusion sites were nearly randomly distributed along the FhuA protein. The FhuA segments directed the secretion of the truncated alkaline phosphatase across the cytoplasmic membrane. The fusion proteins were proteolytically degraded up to the size of alkaline phosphatase and no longer reacted with anti-FhuA antibodies. The fusion proteins were more stable in lon and pep mutants lacking cytoplasmic protease and peptidases, respectively. The larger fusion proteins above a molecular weight of 64000 dalton were predominantly found in the outer membrane fraction. They were degraded by trypsin when cells were converted to spheroplasts so that trypsin gained access to the periplasm. In contrast, FhuA protein in the outer membrane was largely resistant to trypsin. It is concluded that the larger FhuA-PhoA fusion proteins were associated with, but not properly integrated into, the outer membrane.  相似文献   

18.
The optimization of the production of recombinant DNA-derived proteins in Escherichia coli was investigated. We chose restriction endonucleases EcoRI and EcoRV from E. coli as model proteins, despite the observation that overproduction can result in a toxic effect to the cells. The enzymes were expressed as fusion proteins consisting of protein A from Staphylococcus aureus and the desired enzyme in order to facilitate purification. The expression of the fusion protein was induced by a temperature shift using the pR promoter of phage lambda regulated by the repressor plasmid pRK248cI. Data from batch fermentations provided the basis for planning a continuous two-stage fermentation. The EcoRI enzyme activity was investigated as a function of the induction time after cell disintegration and allowed an estimation of yield of the continuous culture. Plasmid instability, which was only observed under continuous conditions, could be prevented by adding tetracycline (resistance of the repressor plasmid) to the medium. We established a continuous cell disintegration system and purified the fusion protein semicontinuously by affinity chromatography. The biological activity of the fusion protein was the same as the native endonuclease so there was no need for cleavage of the fusion protein and the product could be used without further processing.Correspondence to: K. Schügerl  相似文献   

19.
We have used the newly introduced method of De Lorenzo & Freedman (1978) for isolating synaptic vesicles to determine if such vesicles contain both serotonin (5-HT) and serotonin binding protein (SBP). Two fractions were obtained. A 55, 000 g fraction was morphologically heterogeneous and contained coated vesicles. A 135, 0000 vesicle (dia. 51.3 nm) fraction was homogeneous in ultra-structure and contained no coated vesicles. The specific activity of SBP in this fraction was much higher than that in the supernatant. Unlike SBP, very little lactic dehydrogenase activity appeared in the 135, 000 g fraction. Qualitative and quantitative differences were observed between the polypeptide profiles of soluble proteins extracted from the vesicles and supernatant proteins on SDS gels. Therefore, entrapment of cytosol in the vesicles of the 135, 000 g fraction was minimal. The 5-HT concentration of the 135, 000 g vesicles was 5.5 ng/mg protein and in the supernatant, 11.3 ng/mg protein. The ATP concentration in the 135, 000 g vesicle fraction was only 0.8 ng/mg Pr. Rabbit spinal cords were transected in order to determine if SBP is moved proximo-distally in axons by rapid axonal transport as would be predicted for a constituent of synaptic vesicles. SBP accumulated above the cut at a rate consistent with fast transport (78 mm/day). SBP activity fell caudal to the point of transection and there was no evidence, such as an accumulation below the lesion, that might indicate retrograde transport of SBP. These experiments indicate that SBP is probably synthesized in the cell bodies of serotonergic neurons and some is rapidly transported down axons to be stored in terminals in vesicles.  相似文献   

20.
Use of paramagnetic particles to isolate molecules or cells from complex media is well established. Typically, particles are manufactured and coated with a biological molecule that confers specific biorecognition. Incubation of particles with sample and exposure to magnetic fields isolates the species of interest. We have designed, produced and assessed magnetized fusion proteins consisting of the antigen-binding portion of an antibody (single chain variable fraction; scFv) fused to the heavy chain of the iron-binding protein ferritin. The fusion protein subunits expressed in E. coli assemble to form a fusion protein consisting of a ferritin sphere with scFvs on the surface. The fusion proteins were chemically magnetized by introducing a paramagnetic iron core. The resultant fusion protein was shown to be magnetizable and capable of binding target antigens. These “organic” magnetizable particles possess a number of theoretical advantages over traditional inorganic particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号