首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the process of amphibian development, an embryonic body plan is established through cell division, sequential gene expression, morphogenesis and cell differentiation. The mechanism of body patterning is complex and includes multiple induction events. Activin, a TGF-beta family protein, can induce several kinds of mesodermal and endodermal tissues in animal cap explants in a dose-dependent manner. In a recent study of the role of activin in organogenesis, we succeeded in raising a beating heart by treating animal caps with a high concentration of activin. Activin also participates in kidney organogenesis in combination with retinoic acid. An embryonic kidney induced by activin and retinoic acid in vitro can function in vivo when it is transplanted into a larva in which pronephros rudiments have already been removed. Further, the activin-treated animal caps clearly show organizer actions that are closely related to body patterning along the anteroposterior axis. These experiments will help to serve as a model system for understanding organogenesis and body patterning at the cellular and molecular levels.  相似文献   

2.
Formation of three germ layers is the most important event in early vertebrate development. Animal cap assays can be used to reproduce the in vivo induction of amphibian tissues in order to investigate the differentiation processes that occur in normal embryonic development. Activin treatment strongly and dose-dependently induces various types of mesodermal and endodermal tissue in cultured animal caps. Beating heart, pronephros, pancreas and cartilage can be induced by microsurgical manipulation and simultaneous treatment with activin and other factors. These in vitro induction systems will be helpful for elucidating the mechanisms of tissue induction and organ formation in vertebrate development.  相似文献   

3.
Activin A can induce the Xenopus presumptive ectoderm (animal cap) to form different types of mesoderm and endoderm at different concentrations and the animal cap treated with activin can function as an organizer during early development. The dissociated Xenopus animal cap cells treated with activin form an aggregate and it develops into various tissues in vitro. In this study, to induce jaw cartilage from undifferentiated cells effectively, we developed a culture method to manipulate body patterning in vitro, using activin A and dissociated animal cap cells. An aggregate consisting only of activin A-treated dissociated cells developed into endodermal tissues. However, when activin A-treated cells were mixed with untreated cells at a ratio of 1:5, the aggregate developed cartilage with the maxillofacial regional marker genes, goosecoid, Xenopus Distal-less 4 and X-Hoxa2. When this aggregate was transplanted into the abdominal region of host embryos, maxillofacial structures containing cartilage and eye developed. We raised these embryos to adulthood and found that tooth germ had developed in the transplanted tissue. Here, we show the induction of jaw cartilage, tooth germ and eye structures from animal caps using activin A in the aggregation culture method. This differentiation system will help to promote a better understanding of the regulating mechanisms of body patterning and tooth induction in vertebrates.  相似文献   

4.
5.
Regeneration processes in many tissues are modulated by various factors, which are involved in their organogenesis. Activin A, a member of the TGF-β superfamily, inhibits branching tubulogenesis of the kidney in organ culture system as well as in in vitro tubulogenesis model. On the other hand, follistatin, an antagonist activin A, reverses the effect of activin A on kidney development, induces branching tubulogenesis, and also promotes tubular regeneration after ischemia/reperfusion injury by blocking the action of endogenous activin A. The activin-follistatin system is one of the important regulatory systems modulating developmental and regeneration processes of the kidneys.  相似文献   

6.
7.
The discovery of the organizer by H. Spemann and Hilde Mangold, prompted a number of studies of embryonic induction in Japan. C.O. Whitman, N. Yatsu, T. Sato, H. Oka, T. Yamada, and Y.K. Okada were the pioneers in the field of embryonic induction. T. Yamada postulated the double potential theory for embryonic induction. O. Nakamura has modified the fate map of Vogt using newt and Xenopusblastulae. T.S. Okada and G. Eguchi proposed the new concept of "transdifferentiation" based on in vitro experiments in the retina and lens. T.S. Okada is not only an excellent scientist, but he has also nurtured many active developmental biologists. M. Takeichi, from his school, discovered the cell adhesion molecle, cadherin. Nakamura and colleagues tried to determine the origin and formation of the organizer. They performed recombination experiments using the ectoderm, endoderm and mesoderm, and concluded that the phenomenon in which various mesoderm tissues are formed by the recombination of the presumptive ectoderm with endoderm was "regulation of the vegetal-animal gradient". Some groups have also tried to purify specific inducing factors. T. Yamada and colleagues isolated two different types of ribonucleoproteins. I. Kawakami and colleagues showed that the ribosome fraction has neural inducing capacity, and that the extracellular matrix contains mesodermal inducing factors. Finally Asashima and colleagues isolated and identified activin A as a MIF factor. This finding had a great influence not only in the field of developmental biology, but also in molecular biology. Using activin, Asashima's group has successfully generated various organs, tissues, trunk-tail and head structures in vitro using animal caps (undifferentiated cells). Some other important molecules such as BMP, chordin and bFGF are also being studied by young Japanese scientists.  相似文献   

8.
Multiple factors, including members of the FGF, TGF beta, and Wnt family of proteins, are important mediators in the regulation of dorsal-ventral pattern formation during vertebrate development. By using an expression cloning approach to identify novel factors that could regulate dorsal-ventral patterning in the Xenopus embryo, we isolated the Xenopus homologue of the human Os4 gene by virtue of its ability to induce a secondary dorsal axis. While Os4 homologues have been identified in a variety of species, and human Os4 is overexpressed in human tumors, the biological function of Os4 is unknown. To explore the mechanism by which Xenopus Os4 (XOs4) induces a secondary dorsal axis, we used Xenopus explant and whole-embryo assays. The secondary axis induced by XOs4 is distinct from that induced by activation of Wnt or FGF pathways but similar to that induced by inhibition of BMP signaling or activation of an Activin pathway. However, XOs4 did not inhibit BMP signaling in dissociated animal cap explants, indicating that XOs4 does not inhibit BMP signaling. Similar to activation of an Activin-like pathway, expression of XOs4 induces molecular markers for mesoderm in animal cap explants, although expression of gastrula-stage mesodermal markers was very weak and substantially delayed. Yet, XOs4 does not require activity of the Activin signal-transduction pathway for mesoderm induction as dominant-negative components of the Activin/Nodal/Vg1 pathway did not prevent XOs4-mediated induction of mesodermal derivatives. Finally, like Activin/Nodal/Vg1 pathways, XOs4 requires FGF signaling for expression of mesoderm markers. Results presented in this study demonstrate that XOs4 can induce mesoderm and dorsalize ventral mesoderm resulting in ectopic dorsal axis formation, suggesting a role for this large evolutionarily conserved gene family in early development.  相似文献   

9.
10.
Activin B belongs to the TGFβ family of growth factors and is upregulated in clear cell renal cell carcinoma cells by hypoxia inducible factors. Expression of Activin B is required for tumor growth in vivo and tumor cell invasion in vitro. Here we show that activation of RhoA signaling counteracts Activin B mediated disassembly of actin stress fibers, mesenchymal cell morphology and invasiveness, whereas inhibition of RhoA rescues these effects in Activin B knockdown cells. Conversely, Activin B inhibits RhoA signaling suggesting that there is an antagonistic connection between both pathways. In addition we found that Rac1 plays an opposite role to RhoA, i.e. activation of Rac1 initiates loss of actin stress fibers, promotes a mesenchymal cell morphology and induces invasion in Activin B knockown cells, whereas inhibition of Rac1 abolishes these Activin B effects. Collectively, our data provide evidence that reduction of RhoA signaling by Activin B together with persistent Rac1 activity is a prerequisite for inducing an invasive phenotype in clear cell renal cell carcinoma.  相似文献   

11.
12.
13.
Activin induces the expression of different genes in a concentration-dependent manner. In this paper, we show that the initial response of cells to activin, whether assayed in dispersed cells or in a bead-implantation regime in intact animal caps, is to activate expression of both Xbra and goosecoid. However, differential expression of the two genes, with down-regulation of Xbra, occurs very rapidly and certainly within 3 h of the initial phase of expression. This rapid refinement of gene expression can occur in dispersed cells and thus does not require cell-cell interactions. Refinement of gene expression does, however, require protein synthesis but not goosecoid function. Together, our results place the burden of threshold formation not on the initial induction of different genes but on regulatory interactions between the genes once they have been activated.  相似文献   

14.
The earliest form of embryonic kidney, the pronephros, consists of three components: glomus, tubule and duct. Treatment of the undifferentiated animal pole ectoderm of Xenopus laevis with activin A and retinoic acid (RA) induces formation of the pronephric tubule and glomus. In this study, the rate of induction of the pronephric duct, the third component of the pronephros, was investigated in animal caps treated with activin A and RA. Immunohistochemistry using pronephric duct-specific antibody 4A6 revealed that a high proportion of the treated explants contained 4A6-positive tubular structures. Electron microscopy showed that the tubules in the explants were similar to the pronephric ducts of normal larvae, and they also expressed Gremlin and c-ret, molecular markers for pronephric ducts. These results suggest that the treatment of Xenopus ectoderm with activin A and RA induces a high rate of differentiation of pronephric ducts, in addition to the differentiation of the pronephric tubule and glomus, and that this in vitro system can serve as a simple and effective model for analysis of the mechanism of pronephros differentiation.  相似文献   

15.
16.
TGF-beta family signalling pathways are important for germ layer formation and gastrulation in vertebrate embryos and have been studied extensively using embryos of Xenopus laevis. Activin causes changes in cell movements and cell adhesion in Xenopus animal caps and dispersed animal cap cells. Rho family GTPases, including rac, mediate growth factor-induced changes in the actin cytoskeleton, and consequently, in cell adhesion and motility, in a number of different cell types. Ectopic expression of mutant rac isoforms in Xenopus embryos was combined with animal cap adhesion assays and a biochemical assay for rac activity to investigate the role of rac in activin-induced changes in cell adhesion. The results indicate that (1) the perturbation of rac signalling disrupts embryonic cell-cell adhesion, (2) that rac activity is required for activin-induced changes in cell adhesive behavior on fibronectin, and (3) that activin increases endogenous rac activity in animal cap explants.  相似文献   

17.
18.
Activins and Nodal are members of the transforming growth factor beta (TGF-β) family of growth factors. Their Smad2/3-dependent signalling pathway is well known for its implication in the patterning of the embryo after implantation. Although this pathway is active early on at preimplantation stages, embryonic phenotypes for loss-of-function mutations of prominent components of the pathway are not detected before implantation. It is only fairly recently that an understanding of the role of the Activin/Nodal signalling pathway at these stages has started to emerge, notably from studies detailing how it controls the expression of target genes in embryonic stem cells. We review here what is currently known of the TGF-β-related ligands that determine the activity of Activin/Nodal signalling at preimplantation stages, and recent advances in the elucidation of the Smad2/3-dependent mechanisms underlying developmental progression.  相似文献   

19.
Gastrula organiser and embryonic patterning in the mouse   总被引:1,自引:0,他引:1  
Embryonic patterning of the mouse during gastrulation and early organogenesis engenders the specification of anterior versus posterior structures and body laterality by the interaction of signalling and modulating activities. A group of cells in the mouse gastrula, characterised by the expression of a repertoire of "organiser" genes, acts as a source and the conduit for allocation of the axial mesoderm, floor plate and definitive endoderm. The organiser and its derivatives provide the antagonistic activity that modulates WNT and TGFbeta signalling. Recent findings show that the organiser activity is augmented by morphogenetic activity of the extraembryonic and embryonic endoderm, suggesting embryonic patterning is not solely the function of the organiser.  相似文献   

20.
Induction and patterning of the telencephalon in Xenopus laevis   总被引:1,自引:0,他引:1  
We report an analysis of the tissue and molecular interplay involved in the early specification of the forebrain, and in particular telencephalic, regions of the Xenopus embryo. In dissection/recombination experiments, different parts of the organizer region were explanted at gastrula stage and tested for their inducing/patterning activities on either naive ectoderm or on midgastrula stage dorsal ectoderm. We show that the anterior dorsal mesendoderm of the organizer region has a weak neural inducing activity compared with the presumptive anterior notochord, but is able to pattern either neuralized stage 10.5 dorsal ectoderm or animal caps injected with BMP inhibitors to a dorsal telencephalic fate. Furthermore, we found that a subset of this tissue, the anterior dorsal endoderm, still retains this patterning activity. At least part of the dorsal telencephalic inducing activities may be reproduced by the anterior endoderm secreted molecule cerberus, but not by simple BMP inhibition, and requires the N-terminal region of cerberus that includes its Wnt-binding domain. Furthermore, we show that FGF action is both necessary and sufficient for ventral forebrain marker expression in neuralized animal caps, and possibly also required for dorsal telencephalic specification. Therefore, integration of organizer secreted molecules and of FGF, may account for patterning of the more rostral part of Xenopus CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号