首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic complementation of a mutant defective in fatty acid oxidation (fadAB) with plasmids containing DNA inserts from the fadAB region of the Escherichia coli genome was studied. The mutant containing the hybrid plasmid with a 5.2-kilobase (kb) PstI-SalI fragment was found to overproduce 3-hydroxyacyl-coenzyme A (CoA) epimerase and delta 3-cis-delta 2-trans-enoyl-CoA isomerase as well as three other beta-oxidation enzymes by 16- to 18-fold compared with the wild-type parental strain LE392. The purification of a fully functional multienzyme complex of fatty acid oxidation from the transformant ultimately established that the 5.2-kb DNA fragment contained an entire fadAB operon. Since immunotitration of cell extracts with antibodies against the fatty acid oxidation complex proved that all 3-hydroxyacyl-CoA epimerase and delta 3-cis-delta 2-trans-enoyl-CoA isomerase activities were associated with the complex, no genetic loci other than the fadAB operon encoded these two enzymes. Moreover, the binding of antibodies caused parallel inhibition of four component enzymes, whereas 3-ketoacyl-CoA thiolase activity was slightly increased. These findings support the suggestion that the epimerase and isomerase as well as enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase are located on the same polypeptide. The results of this study, together with published data (S.-Y. Yang and H. Schulz, J. Biol. Chem. 258:9780-9785, 1983), lead to the conclusion that 3-hydroxyacyl-CoA epimerase, delta 3-cis-delta 2-trans-enoyl-CoA isomerase, and enoyl-CoA hydratase in addition to 3-hydroxyacyl-CoA dehydrogenase are encoded by the fadB gene.  相似文献   

2.
Mitochondrial 3-hydroxyacyl-CoA dehydrogenase is a key enzyme in the beta-oxidation of fatty acids. The deficiency of this enzyme in patients has been previously reported. We cloned the gene of rat mitochondrial 3-hydroxyacyl-CoA dehydrogenase in a bacterial expression vector pLM1 with six continuous histidine codons attached to the 5' of the gene. The cloned gene was overexpressed in Escherichia coli and the soluble protein was purified with a nickel HiTrap chelating metal affinity column to apparent homogeneity. The specific activity of the purified His-tagged rat mitochondrial 3-hydroxyacyl-CoA dehydrogenase was 452 U/mg. Ser137 is a highly conserved amino acid, which, it has been suggested, is an important residue because of its proximity to the modeled L-3-hydroxyacyl-CoA substrate in the crystal structure of 3-hydroxyacyl-CoA dehydrogenase. We constructed three mutant expression plasmids of the enzyme using site-directed mutagenesis. Mutant proteins were overexpressed in E. coli and purified with a nickel metal affinity column. Kinetic studies of wild-type and mutant proteins were carried out, and the result confirmed that Ser137 is a very important residue of rat mitochondrial 3-hydroxyacyl-CoA dehydrogenase. Our overexpression in E. coli and one-step purification of the highly active rat mitochondrial 3-hydroxyacyl-CoA dehydrogenase greatly facilitated our further investigation of this enzyme, and our result from site-directed mutagenesis increased our understanding of 3-hydroxyacyl-CoA dehydrogenase.  相似文献   

3.
The enzymes NAD-dependent beta-hydroxybutyryl coenzyme A dehydrogenase (BHBD) and 3-hydroxyacetyl coenzyme A (3-hydroxyacyl-CoA) dehydrogenase are part of the central fermentation pathways for butyrate and butanol production in the gram-positive anaerobic bacterium Clostridium acetobutylicum and for the beta oxidation of fatty acids in eucaryotes, respectively. The C. acetobutylicum hbd gene encoding a bacterial BHBD was cloned, expressed, and sequenced in Escherichia coli. The deduced primary amino acid sequence of the C. acetobutylicum BHBD showed 45.9% similarity with the equivalent mitochondrial fatty acid beta-oxidation enzyme and 38.4% similarity with the 3-hydroxyacyl-CoA dehydrogenase part of the bifunctional enoyl-CoA hydratase:3-hydroxyacyl-CoA dehydrogenase from rat peroxisomes. The pig mitochondrial 3-hydroxyacyl-CoA dehydrogenase showed 31.7% similarity with the 3-hydroxyacyl-CoA dehydrogenase part of the bifunctional enzyme from rat peroxisomes. The phylogenetic relationship between these enzymes supports a common evolutionary origin for the fatty acid beta-oxidation pathways of vertebrate mitochondria and peroxisomes and the bacterial fermentation pathway.  相似文献   

4.
The kinetic properties of the fatty acid oxidation complex from Escherichia coli were studied with the aim of elucidating the functional consequence of having enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase associated with a multifunctional polypeptide. The kinetic parameters of individual enzymes were determined and used in model calculations based on a published theory (Storer, A. C., and Cornish-Bowden, A. (1974) Biochem. J. 141, 205-209) to predict the kinetic behavior of a system of functionally unlinked enzymes. The validity of the theory for making these calculations was proven by demonstrating a good agreement between the calculated and observed rates of intermediate and product formation for the conversion of 2-decenoyl-CoA to 3-ketodecanoyl-CoA catalyzed by a mixture of bovine liver enoyl-CoA hydratase and pig heart L-3-hydroxyacyl-CoA dehydrogenase. The conversion of 2-decenoyl-CoA to 3-ketodecanoyl-CoA catalyzed by the sequential action of the hydratase and dehydrogenase of the complex from E. coli was determined by measuring the rate of NADH formation. Stopped-flow measurements showed the rate of NADH formation to be linear without any lag period. When the initial velocity of the hydratase was 10.2 microM min-1, that of the overall reaction was 8.41 microM min-1. In contrast, the results calculated by use of the Storer and Cornish-Bowden equation for a system of unlinked enzymes predicted the overall reaction to exhibit a lag time of 30 s and to result in the accumulation of 2.1 microM 3-hydroxydecanoyl-CoA before reaching a velocity corresponding to 82.5% of that of the hydratase reaction. The high initial rate and the unusual kinetic properties of the overall reaction observed in the present study are best explained by a channeling mechanism on the large subunit of the E. coli fatty acid oxidation complex. When the apparent degree of channeling is corrected for the percentage of the dehydrogenase active sites saturated with NAD+, more than 90% of the intermediate appears to be transferred directly from the active site of enoyl-CoA hydratase to that of 3-hydroxyacyl-CoA dehydrogenase.  相似文献   

5.
The mechanism of 3-hydroxyacyl-CoA epimerase (EC 5.1.2.3), which is associated with the multienzyme complex of fatty acid oxidation from Escherichia coli, was studied with D-3-hydroxy-4-trans-decenoyl-CoA as a substrate. The E. coli complex catalyzes the rapid and direct dehydration of D-3-hydroxy-4-trans-decenoyl-CoA to 2-trans,4-trans-decadienoyl-CoA, which is slowly hydrated to L-3-hydroxy-4-trans-decenoyl-CoA. A kinetic analysis of the epimerase and its partial reactions established that epimerization of 3-hydroxyacyl-CoAs occurs solely by a dehydration/hydration mechanism. The results of a substrate competition study with L-3-hydroxy-4-trans-decenoyl-CoA and its D-isomer, together with the conclusion from a sequence analysis of the large subunit of the E. coli complex (Yang, X.-Y., Schulz, H., Elzinga, M., and Yang, S.-Y. (1991) Biochemistry 30, 6788-6795), prompt the suggestion that a single active site is responsible for the dehydration of the D- and L-isomers of 3-hydroxyacyl-CoAs.  相似文献   

6.
The purified multienzyme complex of fatty acid oxidation from Escherichia coli was found to possess 3-hydroxyacyl-coenzyme A (CoA) epimerase and cis-delta3-trans-delta2-enoyl-CoA isomerase activities in addition to the previously identified enoyl-CoA hydratase, L-3-hydroxyacyl-CoA dehydrogenase, and 3-ketoactyl-CoA thiolase activities. Evidence is presented in support of the proposed association of all five enzyme activities with one protein which apparently is composed of two types of subunits and which can exist in several aggregated forms. The five component enzymes of the complex were rapidly inactivated by tris(hydroxymethyl)aminomethane, whereas they remained active in the presence of potassium phosphate.  相似文献   

7.
8.
The beta-oxidation of 2-trans,4-cis-decadienoyl-CoA, an assumed metabolite of linoleic acid, by purified enzymes from mitochondria, peroxisomes, and Escherichia coli was studied. 2-trans,4-cis-Decadienoyl-CoA is an extremely poor substrate of the beta-oxidation system reconstituted from mitochondrial enzymes. The results of a kinetic evaluation lead to the conclusion that in mitochondria 2-trans,4-cis-decadienoyl-CoA is not directly beta-oxidized, but instead is reduced by NADPH-dependent 2,4-dienoyl-CoA reductase prior to its beta-oxidation. Hence, the mitochondrial beta-oxidation of 2-trans,4-cis-decadienoyl-CoA does not require 3-hydroxyacyl-CoA epimerase, a conclusion which agrees with the finding that 3-hydroxyacyl-CoA epimerase is absent from mitochondria (Chu, C.-H., and Schulz, H. (1985) FEBS Lett. 185, 129-134). However, 2-trans,4-cis-decadienoyl-CoA can be slowly oxidized by the bifunctional beta-oxidation enzyme from rat liver peroxisomes, as well as by the fatty acid oxidation complex from E. coli. The observed rates of 2-trans,4-cis-decadienoyl-CoA degradation by these two multi-functional proteins were significantly higher than the values calculated according to steady-state velocity equations derived for coupled enzyme reactions. This is attributed to the direct transfer of L-3-hydroxy-4-cis-decenoyl-CoA from the active site of enoyl-CoA hydratase to that of 3-hydroxyacyl-CoA dehydrogenase on the same protein molecule. All observations together lead to the suggestion that the chain shortening of 2-trans,4-cis-decadienoyl-CoA in peroxisomes and in E. coli occurs simultaneously by two different pathways. The major pathway involves the NADPH-dependent 2,4-dienoyl-CoA reductase, whereas 3-hydroxyacyl-CoA epimerase functions in the metabolism of D-3-hydroxyoctanoyl-CoA which is formed via the minor pathway.  相似文献   

9.
The gene encoding the multifunctional protein (MFP) of peroxisomal beta-oxidation in Saccharomyces cerevisiae was isolated from a genomic library via functional complementation of a fox2 mutant strain. The open reading frame consists of 2700 base pairs encoding a protein of 900 amino acids. The predicted molecular weight (98,759) is in close agreement with that of the isolated polypeptide (96,000). Analysis of the deduced amino acid sequence revealed similarity to the MFPs of two other fungi but not to that of rat peroxisomes or the multifunctional subunit of the Escherichia coli beta-oxidation complex. The FOX2 gene was overexpressed from a multicopy vector (YEp352) in S. cerevisiae and the gene product purified to apparent homogeneity. A truncated version of MFP lacking 271 carboxyl-terminal amino acids was also overexpressed and purified. Experiments to study the enzymatic properties of the wild-type MFP demonstrated an absence of activities originally assigned to an MFP of S. cerevisiae (crotonase, L-3-hydroxyacyl-CoA dehydrogenase, and 3-hydroxyacyl-CoA epimerase), whereas two other activities were found: 2-enoyl-CoA hydratase 2 (converting trans-2-enoyl-CoA to D-3-hydroxyacyl-CoA) and D-3-hydroxyacyl CoA dehydrogenase (converting D-3-hydroxyacyl-CoA to 3-ketoacyl-CoA). The truncated form contained only the D-3-hydroxyacyl-CoA dehydrogenase activity. These results clearly demonstrate that the beta-oxidation of fatty acids in S. cerevisiae follows a previously unknown stereochemical course, namely it occurs via a D-3-hydroxyacyl-CoA intermediate.  相似文献   

10.
The synthesis of nitroxide spin-labeled derivatives of S-acetoacetyl-CoA, S-acetoacetylpantetheine, and S-acetoacetylcysteamine is described. These compounds are active substrates of L-3-hydroxyacyl-CoA dehydrogenase [(S)-3-hydroxyacyl-CoA:NAD+ oxidoreductase, EC 1.1.1.35] exhibiting vmax values from 20% to 70% of S-acetoacetyl-CoA itself. S-Acetoacetylpantetheine and S-acetoacetylcysteamine form binary complexes with the enzyme and exhibit ESR spectra typical for immobilized nitroxides. In the case of spin-labeled pantetheine, the radical is more mobile. When spin-labeled substrates are bound simultaneously to each active site of this dimeric enzyme, spin-spin interactions differentiate between two alternate orientations of the substrate [Birktoft, J.J., Holden, H.M., Hamlin, R., Xuong, N.H., & Banaszak, L.J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8262-8266]. The fatty acid moiety is thought to be located in a cleft between two domains whereas a large part of the CoA moiety probably extends into the solution. NAD+, spin-labeled at N6 of the adenine ring, is an active coenzyme of L-3-hydroxyacyl-CoA dehydrogenase (60% vmax). Complexes with the enzyme exhibit ESR spectra typical of highly immobilized nitroxides. Binding of coenzyme NAD+ causes conformational changes of the binary enzyme/substrate complex as revealed by changes in the ESR spectrum of spin-labeled S-acetoacetylpantetheine.  相似文献   

11.
Human brain short chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) was found to catalyze the oxidation of 17beta-estradiol and dihydroandrosterone as well as alcohols. Mitochondria have been demonstrated to be the proper location of this NAD+-dependent dehydrogenase in cells, although its primary structure is identical to an amyloid beta-peptide binding protein reportedly associated with the endoplasmic reticulum (ERAB). This fatty acid beta-oxidation enzyme was identified as a novel 17beta-hydroxysteroid dehydrogenase responsible for the inactivation of sex steroid hormones. The catalytic rate constant of the purified enzyme was estimated to be 0.66 min-1 with apparent Km values of 43 and 50 microM for 17beta-estradiol and NAD+, respectively. The catalytic efficiency of this enzyme for the oxidation of 17beta-estradiol was comparable with that of peroxisomal 17beta-hydroxysteroid dehydrogenase type 4. As a result, the human SCHAD gene product, a single-domain multifunctional enzyme, appears to function in two different pathways of lipid metabolism. Because the catalytic functions of human brain short chain L-3-hydroxyacyl-CoA dehydrogenase could weaken the protective effects of estrogen and generate aldehydes in neurons, it is proposed that a high concentration of this enzyme in brain is a potential risk factor for Alzheimer's disease.  相似文献   

12.
Human heart short chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) catalyzes the oxidation of the hydroxyl group of L-3-hydroxyacyl-CoA to a keto group, concomitant with the reduction of NAD+ to NADH, as part of the beta-oxidation pathway. The homodimeric enzyme has been overexpressed in Escherichia coli, purified to homogeneity, and studied using biochemical and crystallographic techniques. The dissociation constants of NAD+ and NADH have been determined over a broad pH range and indicate that SCHAD binds reduced cofactor preferentially. Examination of apparent catalytic constants reveals that SCHAD displays optimal enzymatic activity near neutral pH, with catalytic efficiency diminishing rapidly toward pH extremes. The crystal structure of SCHAD complexed with NAD+ has been solved using multiwavelength anomalous diffraction techniques and a selenomethionine-substituted analogue of the enzyme. The subunit structure is comprised of two domains. The first domain is similar to other alpha/beta dinucleotide folds but includes an unusual helix-turn-helix motif which extends from the central beta-sheet. The second, or C-terminal, domain is primarily alpha-helical and mediates subunit dimerization and, presumably, L-3-hydroxyacyl-CoA binding. Molecular modeling studies in which L-3-hydroxybutyryl-CoA was docked into the enzyme-NAD+ complex suggest that His 158 serves as a general base, abstracting a proton from the 3-OH group of the substrate. Furthermore, the ability of His 158 to perform such a function may be enhanced by an electrostatic interaction with Glu 170, consistent with previous biochemical observations. These studies provide further understanding of the molecular basis of several inherited metabolic disease states correlated with L-3-hydroxyacyl-CoA dehydrogenase deficiencies.  相似文献   

13.
The activities of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) were compared with those in the animals fed safflower oil rich in linoleic acid (18:2) and saturated fats (coconut or palm oil). Mitochondrial and peroxisomal palmitoyl-CoA (16:0-CoA) oxidation rates in the liver homogenates were significantly higher in rats fed linseed and perilla oils than in those fed saturated fats and safflower oil. The fatty oxidation rates increased as dietary levels of alpha-18:3 increased. Dietary alpha-18:3 also increased the activity of fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. Unexpectedly, dietary alpha-18:3 caused great reduction in the activity of 3-hydroxyacyl-CoA dehydrogenase measured with short- and medium-chain substrates but not with long-chain substrate. Dietary alpha-18:3 significantly increased the mRNA levels of hepatic fatty acid oxidation enzymes including carnitine palmitoyltransferase I and II, mitochondrial trifunctional protein, acyl-CoA oxidase, peroxisomal bifunctional protein, mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases, 2, 4-dienoyl-CoA reductase and delta3, delta2-enoyl-CoA isomerase. Fish oil rich in very long-chain n-3 fatty acids caused similar changes in hepatic fatty acid oxidation. Regarding the substrate specificity of beta-oxidation pathway, mitochondrial and peroxisomal beta-oxidation rate of alpha-18:3-CoA, relative to 16:0- and 18:2-CoAs, was higher irrespective of the substrate/albumin ratios in the assay mixture or dietary fat sources. The substrate specificity of carnitine palmitoyltransferase I appeared to be responsible for the differential mitochondrial oxidation rates of these acyl-CoA substrates. Dietary fats rich in alpha-18:3-CoA relative to safflower oil did not affect the hepatic activity of fatty acid synthase and glucose 6-phosphate dehydrogenase. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed alpha-18:3.  相似文献   

14.
Peroxisomal beta-oxidation system consists of peroxisome proliferator-activated receptor alpha (PPARalpha)-inducible pathway capable of catalyzing straight-chain acyl-CoAs and a second noninducible pathway catalyzing the oxidation of 2-methyl-branched fatty acyl-CoAs. Disruption of the inducible beta-oxidation pathway in mice at the level of fatty acyl-CoA oxidase (AOX), the first and rate-limiting enzyme, results in spontaneous peroxisome proliferation and sustained activation of PPARalpha, leading to the development of liver tumors, whereas disruptions at the level of the second enzyme of this classical pathway or of the noninducible system had no such discernible effects. We now show that mice with complete inactivation of peroxisomal beta-oxidation at the level of the second enzyme, enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase (L-PBE) of the inducible pathway and D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase (D-PBE) of the noninducible pathway (L-PBE-/-D-PBE-/-), exhibit severe growth retardation and postnatal mortality with none surviving beyond weaning. L-PBE-/-D-PBE-/- mice that survived exceptionally beyond the age of 3 weeks exhibited overexpression of PPARalpha-regulated genes in liver, despite the absence of morphological evidence of hepatic peroxisome proliferation. These studies establish that peroxisome proliferation in rodent liver is highly correlatable with the induction mostly of the L- and D-PBE genes. We conclude that disruption of peroxisomal fatty acid beta-oxidation at the level of second enzyme in mice leads to the induction of many of the PPARalpha target genes independently of peroxisome proliferation in hepatocytes, raising the possibility that intermediate metabolites of very long-chain fatty acids and peroxisomal beta-oxidation act as ligands for PPARalpha.  相似文献   

15.
Acetoacetyl-CoA was found to strongly inhibit the dehydrogenation of L-3-hydroxybutyryl-CoA catalyzed by L-3-hydroxyacyl-CoA dehydrogenase from pig heart. The inhibition constant (Ki) was determined to be 7.7 × 10?6 M, a value which is similar to the Km value of 12 × 10?6 M obtained for acetoacetyl-CoA in its NADH-dependent reduction catalyzed by the same enzyme. A suggested ordered BiBi mechanism for this enzyme, with NAD binding to the enzyme first, explains the observed noncompetitive nature of this inhibition. The possible effect of this inhibition on fatty acid oxidation is discussed.  相似文献   

16.
Messenger RNA for 3-hydroxyacyl-CoA dehydrogenase, a mitochondrial matrix enzyme of fatty acid beta-oxidation, was purified from livers of di(2-ethylhexyl)phthalate-treated rats by immunoadsorption of hepatic free polysomes to fixed cells of Staphylococcus aureus and enrichment for poly(A)-rich RNA by oligo(dT)-cellulose chromatography. Plasmid cDNA was constructed from this poly(A)-rich RNA by a modification of the method of Okayama and Berg and was transformed into the Escherichia coli DH1 strain. Plasmids containing cDNA sequences coding for 3-hydroxyacyl-CoA dehydrogenase were screened by differential colony hybridization, and were identified by hybrid-arrested translation and hybrid-selected translation. Plasmid pHADH-1, which contains a 1400-base-pair insert, hybridized to rat 3-hydroxyacyl-CoA dehydrogenase mRNA with a length of 1700 bases. Determination of the dehydrogenase mRNA by in vitro translation and dot-blot analysis with the cDNA probe showed that the induction of the enzyme in rat liver by di(2-ethylhexyl)phthalate could be attributed to an increase in the mRNA concentration.  相似文献   

17.
(3R)-hydroxyacyl-CoA dehydrogenase is part of multifunctional enzyme type 2 (MFE-2) of peroxisomal fatty acid beta-oxidation. The MFE-2 protein from yeasts contains in the same polypeptide chain two dehydrogenases (A and B), which possess difference in substrate specificity. The crystal structure of Candida tropicalis (3R)-hydroxyacyl-CoA dehydrogenase AB heterodimer, consisting of dehydrogenase A and B, determined at the resolution of 2.2A, shows overall similarity with the prototypic counterpart from rat, but also important differences that explain the substrate specificity differences observed. Docking studies suggest that dehydrogenase A binds the hydrophobic fatty acyl chain of a medium-chain-length ((3R)-OH-C10) substrate as bent into the binding pocket, whereas the short-chain substrates are dislocated by two mechanisms: (i) a short-chain-length 3-hydroxyacyl group ((3R)-OH-C4) does not reach the hydrophobic contacts needed for anchoring the substrate into the active site; and (ii) Leu44 in the loop above the NAD(+) cofactor attracts short-chain-length substrates away from the active site. Dehydrogenase B, which can use a (3R)-OH-C4 substrate, has a more shallow binding pocket and the substrate is correctly placed for catalysis. Based on the current structure, and together with the structure of the 2-enoyl-CoA hydratase 2 unit of yeast MFE-2 it becomes obvious that in yeast and mammalian MFE-2s, despite basically identical functional domains, the assembly of these domains into a mature, dimeric multifunctional enzyme is very different.  相似文献   

18.
The physiological activity of fish oil, and ethyl esters of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) affecting hepatic fatty acid oxidation was compared in rats. Five groups of rats were fed various experimental diets for 15 days. A group fed a diet containing 9.4% palm oil almost devoid of n-3 fatty acids served as a control. The test diets contained 4% n-3 fatty acids mainly as EPA and DHA in the form of triacylglycerol (9.4% fish oil) or ethyl esters (diets containing 4% EPA ethyl ester, 4% DHA ethyl ester, and 1% EPA plus 3% DHA ethyl esters). The lipid content of diets containing EPA and DHA ethyl esters was adjusted to 9.4% by adding palm oil. The fish oil diet and ethyl ester diets, compared to the control diet containing 9.4% palm oil, increased activity and mRNA levels of hepatic mitochondrial and peroxisomal fatty acid oxidation enzymes, though not 3-hydroxyacyl-CoA dehydrogenase activity. The extent of the increase was, however, much greater with the fish oil than with EPA and DHA ethyl esters. EPA and DHA ethyl esters, compared to the control diet, increased 3-hydroxyacyl-CoA dehydrogenase activity, but fish oil strongly reduced it. It is apparent that EPA and DHA in the form of ethyl esters cannot mimic the physiological activity of fish oil at least in affecting hepatic fatty acid oxidation in rat.  相似文献   

19.
The atomic view of the active site coupling termed channelling is a major subject in molecular biology. We have determined two distinct crystal structures of the bacterial multienzyme complex that catalyzes the last three sequential reactions in the fatty acid beta-oxidation cycle. The alpha2beta2 heterotetrameric structure shows the uneven ring architecture, where all the catalytic centers of 2-enoyl-CoA hydratase (ECH), L-3-hydroxyacyl-CoA dehydrogenase (HACD) and 3-ketoacyl-CoA thiolase (KACT) face a large inner solvent region. The substrate, anchored through the 3'-phosphate ADP moiety, allows the fatty acid tail to pivot from the ECH to HACD active sites, and finally to the KACT active site. Coupling with striking domain rearrangements, the incorporation of the tail into the KACT cavity and the relocation of 3'-phosphate ADP bring the reactive C2-C3 bond to the correct position for cleavage. The alpha-helical linker specific for the multienzyme contributes to the pivoting center formation and the substrate transfer through its deformation. This channelling mechanism could be applied to other beta-oxidation multienzymes, as revealed from the homology model of the human mitochondrial trifunctional enzyme complex.  相似文献   

20.
The multienzyme complex for fatty acid oxidation was purified from Pseudomonas fragi, which was grown on oleic acid as the sole carbon source. This complex exhibited enoyl-CoA hydratase [EC 4.2.1.17], 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.35], 3-oxoacyl-CoA thiolase [EC 2.3.1.16], cis-3,trans-2-enoyl-CoA isomerase [EC 5.3.3.3], and 3-hydroxyacyl-CoA epimerase [EC 5.1.2.3] activities. The molecular weight of the native complex was estimated to be 240,000. Two types of subunits, with molecular weights of 73,000 and 42,000, were identified. The complex was composed of two copies each of the 73,000- and 42,000-Da subunits. The beta-oxidation system was reconstituted in vitro using the multienzyme complex, acyl-CoA synthetase and acyl-CoA oxidase. This reconstituted system completely oxidized saturated fatty acids with acyl chains of from 4 to 18 carbon atoms as well as unsaturated fatty acids having cis double bonds extending from odd-numbered carbon atoms. However, unsaturated fatty acids having cis double bonds extending from even-numbered carbon atoms were not completely oxidized to acetyl-CoA: about 5 mol of acetyl-CoA was produced from 1 mol of linoleic or alpha-linolenic acid, and about 2 mol of acetyl-CoA from 1 mol of gamma-linolenic acid. These results suggested that the 3-hydroxyacyl-CoA epimerase in the complex was not operative. When the epimerase was by-passed by the addition of 2,4-dienoyl-CoA reductase to the reconstituted system, unsaturated fatty acids with cis double bonds extending from even-numbered carbon atoms were also completely degraded to acetyl-CoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号