首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell surface and intracellular functions for ricin galactose binding.   总被引:4,自引:0,他引:4  
The role of the two galactose binding sites of ricin B chain in ricin toxicity was evaluated by studying a series of ricin point mutants. Wild-type (WT) ricin and three ricin B chain point mutants having mutations in either 1) the first galactose binding domain (site 1 mutant, Met in place of Lys-40 and Gly in place of Asn-46), 2) the second galactose binding domain (site 2 mutant, Gly in place of Asn-255), or 3) both galactose binding domains (double site mutant containing all three amino acid replacements formerly stated) were expressed in Xenopus oocytes and then reassociated with recombinant ricin A chain. The different ricin B chains were mannosylated to the same extent. Cytotoxicity of these toxins was evaluated when cell entry was mediated either by galactose-containing receptors or through an alternate receptor, the mannose receptor of macrophages. WT ricin and each of the single domain mutants was able to kill Vero cells following uptake by galactose containing receptors. Lactose blocked the toxicity of each of these ricins. Site 1 and 2 mutants were 20-40 times less potent than WT ricin, and the double site mutant had no detectable cytotoxicity. WT ricin, the site 1 mutant, and the site 2 mutant also inhibited protein synthesis of mannose receptor-containing cells. Ricin can enter these cells through either a cell-surface galactose-containing receptor or through the mannose receptor. By including lactose in the cell medium, galactose-containing receptor-mediated uptake is blocked and cytotoxicity occurs solely via the mannose receptor. WT ricin, site 1, and site 2 mutants were cytotoxic to macrophages in the presence of lactose with the relative potency, WT greater than site 2 mutant greater than site 1 mutant. The double site mutant lacked cytotoxicity either in the absence or presence of lactose. Thus, even for mannose receptor-mediated toxicity of ricin, at least one galactose binding site remains necessary for cytotoxicity and two galactose binding sites further increases potency. These results are consistent with the model that the ricin B chain galactose binding activity plays a role not only in cell surface binding but also intracellularly for ricin cytotoxicity.  相似文献   

2.
The role of the high mannose carbohydrate chains in the mechanism of action of ricin toxin was investigated. Ricin is taken up by two routes in macrophages, by binding to cell surface mannose receptors, or by binding of the ricin galactose receptor to cell surface glycoproteins. Removal of carbohydrate from ricin by periodate oxidation led to a large loss in toxicity via both routes of uptake by an effect on the B chain not due to a loss of galactose binding affinity. These data suggest that the carbohydrate chains of ricin B chain may be required for full toxicity. The pathway of uptake of ricin by the macrophage mannose receptor was found to differ in several respects from uptake via the galactose-specific pathway. Analysis of intoxication of macrophages by ricin in the presence of ammonium chloride suggested that mannose receptor bound ligand passes through acidic vesicles prior to translocation, unlike galactose bound ligand. Intoxication by ricin via galactose-specific uptake was potentiated by swainsonine but not by castanospermine, suggesting that ricin may be attacked by an endogenous mannosidase within the cell, and that ricin passes through either a lysosomal or a Golgi compartment prior to translocation.  相似文献   

3.
We have compared the mechanisms of ricin binding to and entry into Zajdela hepatoma cells (ZHC) and normal rat hepatocytes (HyC). Lactose but not mannan was found to inhibit ricin binding to and toxicity on ZHC and HyC. This finding suggests that ricin binding, entry, and toxicity are expressed only through the galactose binding sites on ZHC and HyC. Nevertheless, the characteristics of ricin binding and its entry pathway appeared to be different in several respects in ZHC and HyC. Scatchard analysis of equilibrium data determined over a wide range of 125I-labeled ricin concentrations yielded a curvilinear plot for ZHC, while a straight line was obtained for HyC. These results indicate that only ZHC possess high-affinity receptors for ricin. Analysis of ricin toxicity on ZHC and HyC, in the presence of ammonium chloride or after K+-depletion in both cell types, suggests that the ricin bound to galactose receptors entered through neutral vesicles in ZHC, and through both neutral and acidic vesicles in HyC. The qualitative and quantitative differences found between the process of receptor-mediated endocytosis of ricin in ZHC and HyC might explain the differential sensitivity of the two cell types toward the toxin.  相似文献   

4.
The plant toxin ricin is transported to the Golgi and the endoplasmic reticulum before translocation to the cytosol where it inhibits protein synthesis. The toxin can therefore be used to investigate pathways leading to the Golgi apparatus. Except for the Rab9-mediated transport of mannose 6-phosphate receptors from endosomes to the trans-Golgi network (TGN), transport routes between endosomes and the Golgi apparatus are still poorly characterized. To investigate endosome to Golgi transport, we have used here a modified ricin molecule containing a tyrosine sulfation site and quantified incorporation of radioactive sulfate, a TGN modification. A tetracycline-inducible mutant Rab9S21N HeLa cell line was constructed and characterized to study whether Rab9 was involved in transport of ricin to the TGN and, if not, to further investigate the route used by ricin. Induced expression of Rab9S21N inhibited Golgi transport of mannose 6-phosphate receptors but did not affect the sulfation of ricin, suggesting that ricin is transported to the TGN via a Rab9-independent pathway. Moreover, because Rab11 is present in the endosomal recycling compartment and the TGN, studies of transient transfections with mutant Rab11 were performed. The results indicated that routing of ricin from endosomes to the TGN occurs by a Rab11-independent pathway. Finally, because clathrin has been implicated in early endosome to TGN transport, ricin transport was investigated in cells with inducible expression of antisense to clathrin heavy chain. Importantly, endosome to TGN transport (sulfation of endocytosed ricin) was unchanged when clathrin function was abolished. In conclusion, ricin is transported from endosomes to the Golgi apparatus by a Rab9-, Rab11-, and clathrin-independent pathway.  相似文献   

5.
Ricin A chain has previously been shown to intoxicate macrophages in vitro following binding and endocytosis by the macrophage mannose receptor. In this report it is demonstrated that the intravenous injection of ricin A chain in nephrectomized rats leads to a prolonged plasma half-life for [125I]beta-glucuronidase, a ligand for the mannose receptor. Clearance of [125I]asialofetuin, a ligand for the galactose receptor of hepatocytes, was unaffected by injection of A chain. Microscopic examination of the livers of A chain-treated animals revealed a loss of phagocytic cells from the liver sinusoids. These results suggest that ricin A chain may be useful as a toxin specific for mannose receptor bearing cells of the reticuloendothelial system.  相似文献   

6.
The carbohydrate in the toxic glycoprotein ricin was chemically modified by simultaneous treatment with sodium metaperiodate and sodium cyanoborohydride. This treatment causes oxidative cleavage of the sugar residues and reduction of the aldehyde groups which are formed to primary alcohols. The modification markedly decreased the rapid removal of ricin from the blood by hepatic non-parenchymal cells with only a relatively small increase in accumulation of the toxin by parenchymal cells. Binding, uptake and toxicity of the modified ricin in primary monolayer cultures of hepatic non-parenchymal cells were all decreased to a much greater extent than in parenchymal cells. The results indicate that native ricin binds to non-parenchymal cells by a dual recognition process which involves both interaction of cell receptors with the mannose-containing oligosaccharides of the toxin and binding of ricin to galactose-containing glycoproteins and glycolipids on the cells. However, uptake and toxicity of native ricin in non-parenchymal cells appears to result principally from entry of the toxin through the mannose recognition pathway. By contrast, uptake and toxicity of the expressed essentially through the galactose-recognition route.  相似文献   

7.
The binding, mobility, and mode of cell entry of the plant toxin ricin (or RCAII) were investigated on susceptible and partially resistant murine cell lines. When susceptible cells (SV40-transformed 3T3 fibroblast cells and BW5147 lymphoma cells) were examined, ricin bound rapidly, induced endocytosis, and entered the cell cytoplasm via broken endocytotic vesicles to inhibit cell protein synthesis, as found previously (1). Addition of lactose within 15 min after initial ricin binding prevented toxicity. After this time lactose addition no longer blocked the inhibition of protein synthesis. In a partially resistant lymphoma (BW5147/RCA3) that shows only a slight reduction in the total number of ricin-binding sites, ricin bound rapidly to the cell surface, but was endocytosed significantly less at low ricin doses compared to its parental line, indicating a possible difference in cell surface behavior. The exposed surface proteins on the BW5147 parental and BW5147/RCA3 resistant lines were examined by 125I-labeling utilizing lactoperoxidase-catalyzed iodination. The radiolabeled components were solubilized and separated by slab gel electrophoresis in sodium dodecyl sulfate. Autoradiograms of the slab gels indicated that two surface components of approximately 80,000 and 35,000 mol wt were much less exposed or were missing on the resistant line.  相似文献   

8.
Previous work has shown that, following an intramuscular injection of ricin, the toxin becomes localized within histiocytes in the sinuses of lymph nodes draining the 'wound' site. When ricin labelled with colloidal gold was similarly injected, it was found within the same lymphoid cells as seen with native ricin. Biologically inert Indian ink apparently follows a similar fate, as demonstrated by the appearance of carbon particles within sinus histiocytes, as soon as 1 h after intramuscular injection. When the binding in vitro of Indian ink or ricin toxin to sections of lymph node was examined, ricin was seen to bind to the surfaces of the same sinusoidal cells and also, with a much lower frequency, to follicular lymphocytes, whereas Indian ink failed to bind. This indicated an interaction between ricin and cell membrane components. Moreover, this binding was inhibited markedly by the galactose-containing disaccharide, lactose, a target sugar specified by the lectin binding site of ricin and to a much lesser extent by the monosaccharide mannose.  相似文献   

9.
N-acetylimidazole (NAI) was used to O-acetylate the plant seed toxin ricin. O-acetylation of one to two tyrosine residues per molecule of ricin inhibited ricin binding to Sepharose 4B and decreased toxicity by 90% in a protein synthesis inhibition assay in HeLa cells. Lactose, known to block the binding site on the ricin B subunit, protected ricin from NAI modification of binding or toxicity. Thus NAI, under these conditions, can be a lactose site-specific inhibitor. The lactose site-specific modification of the hybrid toxin, Man6P-ricin, performed under the same conditions, exhibited the same 90% inhibition of Man6P receptor-mediated toxicity as the galactose-containing receptor-mediated toxicity of either Man6P-ricin or ricin. Thus the ricin B chain lactose-binding site appears to be essential for the high potency of Man6P-ricin via the new cell type-specific Man6P receptor. Treatment of fibroblasts with neuraminidase exposes galactose residues, thus increasing the sensitivity to ricin eight fold. The Man6P receptor-mediated toxicity of Man6P-ricin is not affected by this treatment, although the galactose-inhibited route is potentiated eight fold. The Man6P-ricin hybrid appears to require the ricin B chain galactose-binding site to enter the cytosol after initially binding to the Man6P receptor. These data provide some insights into the proper design of hybrid toxins. We discuss a number of possible models for hybrid toxin entry.  相似文献   

10.
The human B-cell line Namalwa expresses the common acute lymphoblastic leukemia antigen (CALLA). Frame-shift mutants in Namalwa cell cultures were generated with ICR-191, and mutants were then selected for resistance to ricin or resistance to a conjugate of ricin with the anti-CALLA antibody J5 in the presence of lactose. Three mutants were found that were resistant to ricin and were in addition shown to be resistant to diphtheria toxin, to a J5-ricin conjugate, and to a conjugate between ricin B-chain and gelonin. The mutants, however, were sensitive to a J5-gelonin conjugate. These mutants expressed high levels of CALLA and/or receptors for ricin, and their cell-free translation systems appeared to be as sensitive to the inhibitory action of ricin A-chain and of gelonin as the translation system of wild-type Namalwa cells. The behavior of these mutants was consistent with the hypothesis that these cells possess an alteration of their surface that impedes the passage of ricin and diphtheria toxin across the plasma membrane. A fourth mutant was found to bind reduced quantities of ricin and was resistant to ricin but was sensitive to J5-ricin. The properties of this cell line provide evidence that the binding of antibody-ricin conjugates to cells via the ricin moiety may be prevented without impeding the cytotoxicity of the conjugates.  相似文献   

11.
Human lymphocyte cultures were incubated with the nontoxic abrus agglutinin and with ricin B chain, and the incorporation of 3H thymidine was measured. Abrus agglutinin stimulated strongly the thymidine incorporation whereas ricin B chain had a much lesser effect. When galactose or lactose was added to the cultures together with the lectins, the abrus agglutinin and ricin B chain induced thymidine incorporation was strongly reduced. There was a linear relationship between the concentration of lectin and the concentration of lactose required for inhibition of lymphocyte stimulation. N-acetyl-galactosamine had a much lesser inhibiting effect and alpha-methyl-mannoside did not cause any inhibition. The abrus agglutinin induced thymidine incorporation was not demonstrable before 36 to 40 hr and reached its maximum after 2 to 5 days. If lactose was added within the first 4 hr of incubation with abrus agglutinin no stimulation was observed.  相似文献   

12.
The binding to and toxicity of ricin on Zajdela hepatoma ascites cells were studied. The kinetic analysis of [125I]-ricin binding to hepatoma cells indicated that maximal specific binding was reached within 30 min. at 4 degrees C and 60 min. at 25 degrees C and that toxin binding to hepatoma cells was saturable. When the binding data were plotted according to the method of Scatchard, curvilinear graphs were obtained suggesting that hepatoma cells have both high and low affinity receptors for ricin. The number of high and low affinity receptors was identical at 4 and 25 degrees C, i.e., 8 x 10(5) and 1.2 x 10(7) sites per cell respectively. However, the capacity of hepatoma cells to bind ricin is stronger at 4 degrees C than at 25 degrees C. The toxic activity of ricin was totally abolished in the presence of lactose suggesting that ricin binding to cells occurs through binding sites containing galactosyl residues.  相似文献   

13.
We have constructed hybrid proteins in which the toxic A chains of ricin or diptheria toxin have been linked to either asialofetuin, fetuin, or epidermal growth factor (EGF). Both ASF-RTA and ASF-DTA are potent toxins on cultured rat hepatocytes, cells that display the asialoglycoprotein receptor. Toxicity of these two compounds is restricted to hepatocytes and can be blocked by asialoglycoproteins but not the native glycoproteins or asialoagalactoglycoprotein derivatives, indicating that the toxicity of the conjugates is mediated by the hepatic asialoglycoprotein receptor. The EGF-RTA conjugate is an extremely potent toxin on cells that can bind the hormone, but is only poorly effective on cells that are unable to bind EGF. The EGF-DTA conjugate, in contrast, is unable to kill 3T3 cells and is at least two orders of magnitude less effective than EGF-RTA on A431 cells, a cell line with 1-2 X 10(6) EGF receptors per cell. However, when EGF-RTA and EGF-DTA were tested on primary liver hepatocyte cultures, which were susceptible to both ASF-RTA and ASF-DTA, both EGF conjugates were potent toxins. Sensitivity of the hepatocyte cultures to ricin toxicity increases slightly during a 52-hr culture period. In contrast, sensitivity to EGF-RTA and ASF-RTA decline dramatically during this period. Receptors for both ligands remain plentiful on the cell surface during this time.  相似文献   

14.
Pediococcus damnosus can coflocculate with Saccharomyces cerevisiae and cause beer acidification that may or may not be desired. Similar coflocculations occur with other yeasts except for Schizosaccharomyces pombe which has galactose-rich cell walls. We compared coflocculation rates of S. pombe wild-type species TP4-1D, having a mannose-to-galactose ratio (Man:Gal) of 5 to 6 in the cell wall, with its glycosylation mutants gms1-1 (Man:Gal = 5:1) and gms1Delta (Man:Gal = 1:0). These mutants coflocculated at a much higher level (30 to 45%) than that of the wild type (5%). Coflocculation of the mutants was inhibited by exogenous mannose but not by galactose. The S. cerevisiae mnn2 mutant, with a mannan content similar to that of gms1Delta, also showed high coflocculation (35%) and was sensitive to mannose inhibition. Coflocculation of P. damnosus and gms1Delta (or mnn2) also could be inhibited by gms1Delta mannan (with unbranched alpha-1,6-linked mannose residues), concanavalin A (mannose and glucose specific), or NPA lectin (specific for alpha-1,6-linked mannosyl units). Protease treatment of the bacterial cells completely abolished coflocculation. From these results we conclude that mannose residues on the cell surface of S. pombe serve as receptors for a P. damnosus lectin but that these receptors are shielded by galactose residues in wild-type strains. Such interactions are important in the production of Belgian acid types of beers in which mixed cultures are used to improve flavor.  相似文献   

15.
beta-N-Acetylglucosaminidase isolated from the secretions of fibroblasts of mucolipidosis-II and -III patients is internalized by cultured non-parenchymal rat liver cells. The rate of endocytosis compared with that of beta-N-acetylglucosaminidase from control fibroblasts was 11 and 19% for the enzyme from mucolipidosis-II and -III patients respectively. The inhibition of endocytosis by mannan indicates that the beta-N-acetylglucosaminidase from mucolipidosis-II and -III patients is recognized by cell-surface receptors specific for mannose.  相似文献   

16.
Attempts to target antibody-ricin conjugates (immunotoxins) to designated cell types in vivo may be thwarted by their rapid clearance by hepatic reticuloendothelial cells which have receptors that recognise oligosaccharide side chains on the toxin. The B-chain of ricin contains high mannose type oligosaccharides and the A-chain contains a complex unit (GlcNAc)2-Fuc-Xyl-(Man)4-6, all of which potentially could be recognised by the reticuloendothelial system. Treatment of ricin with a mixture of sodium metaperiodate and sodium cyanoborohydride at pH 3.5 resulted in oxidative cleavage of the carbohydrates and reduction of the aldehyde groups thus formed to primary alcohols. By conducting the modification procedure at acidic pH, both the possibility of Schiff's base formation between the aldehyde groups and amino groups in the protein and the possibility of non-specific oxidation of amino acids were minimised. The extent of the carbohydrate modification depended on the duration of treatment, resulting maximally in the destruction of 13 of the 18 mannose residues and of all xylose and fucose. The toxicity of the modified toxin to cells in culture declined by up to 90% as the carbohydrate was destroyed. This was not due to a reduced ability of the B-chain to bind to cells or of the A-chain to inactivate ribosomes. In contrast to the in vitro results, the toxicity of the modified toxin to mice and rats was elevated by up to fourfold. The modification greatly reduced the clearance of the toxin by non-parenchymal cells in the liver and prevented the damage to hepatic Kupffer and sinusoidal cells and to the red pulp of the spleen that is inflicted by the native toxin. The elevated toxicity to animals appears to be because the modified toxin evades the reticuloendothelial system and persists in the bloodstream for longer periods, thus resulting in lethal damage to vital tissues in the animal at lower dosage. The results suggest that immunotoxins prepared from modified ricin would not be readily cleared by the reticuloendothelial system and so be more effective at killing their target cells.  相似文献   

17.
The plant protein toxin ricin has found widespread application as a potential therapeutic agent for many human diseases and in disease-model systems such as those involving apoptosis. Genetic engineering and expression of the complete two-polypeptide chain toxin have only been possible in plants, specifically in transgenic tobacco carrying the preproricin gene under the control the cauliflower mosaic virus 35S promoter. Production of modified ricin for altered controllable activity and/or fusion therapeutics to target delivery requires knowledge of the heterologous processing that occurs when preproricin is expressed in tobacco. Here, recombinant ricin from transgenic tobacco was purified using lectin affinity chromatography and characterized using various biochemical and biophysical techniques. Coomassie blue staining of an SDS-PAGE gel of lactose-agarose purified material identified predominant proteins of 30 and 35 kDa molecular weight. Western analysis using anti-ricin a- and b-chain antibodies confirmed the expression and purification of recombinant ricin, with identical protein banding profiles to that of authentic castor-bean-derived ricin. High-resolution gel filtration chromatography characterized the lactose binding complex as a 66-kDa native molecular weight protein which could be separated into 30- and 35-kDa proteins upon incubation with the reducing agent dithiothreitol. N-terminal sequencing of the recombinant ricin a-chain revealed that an equimolar ratio of two alternately processed peptides was present, which varied by an additional amino acid derived from the signal peptide. Similar analysis of ricin b-chain again identified two forms of this polypeptide as well; however, full-length ricin b-chain and b-chain missing the first alanine residue were present at 11:1 molar ratios. Transgenic tobacco plants expressing ricin were used to develop a stable cell suspension culture system from callus induced with the growth regulators 2,4-dichlorophenoxyacetic acid and 6-benzylaminopurine. Double sandwich enzyme-linked immunosorbent assay using anti-ricin b-chain antibodies and Western analysis identified soluble ricin in the media of the cultures, indicating that cell cultures provide a safe and simple means to produce properly processed recombinant ricin.  相似文献   

18.
ABSTRACT. We have studied the action of diphtheria toxin, modeccin and ricin on HeLa cells infected by Trypanosoma cruzi . Parasitized HeLa cells were resistant to diphtheria toxin and modeccin, whereas non-parasitized cells from the same cultures and control cultures showed cytopathological alterations. Protein synthesis, assayed by the incorporation of labelled methionine, diminished in toxin-treated control cultures but remained unaltered in the infected ones, compared to synthesis by untreated infected cells. Ricin, on the other hand, is a toxin that enters the cytoplasm by endocytosis. It has greater cytopathological effects in parasitized cells than in non-parasitized ones from the same cultures or uninfected control cells. Protein synthesis was inhibited in infected cultures treated with ricin.  相似文献   

19.
A monoclonal antibody raised against purified ricin B chain, 75/3B12, blocked ricin toxicity 30- to 100-fold in vitro. The 75/3B12 IgG and F(ab')2 blocked ricin binding to cell surface galactose-containing receptors. The 75/3B12 Fab bound ricin D with a Ka of 10(7) M-1, and this binding was blocked by asialofetuin, lactose, and N-acetylgalactosamine--molecules which interact with the ricin galactose-binding site--but not by fetuin, sucrose, or glucose. The 75/3B12 Fab contained no detectable carbohydrate and, according to several lines of evidence, did not bind ricin via Ig carbohydrate determinants. The monoclonal antibody appears to recognize a galactose-binding site on ricin D via the variable region of the antibody. The 75/3B12 Fab bound ricin E only 1/50 as well as ricin D and bound the Ricinus agglutinin only 1/80 as well as ricin D. The antibody specificity indicates that structural differences exist in the galactose-binding sites of the Ricinus communis lectins. Abrin and other lectins which bind galactose or N-acetylgalactosamine were not significantly bound by the monoclonal antibody. In vitro, the antibody blocked the nontarget toxicity of immunotoxins similarly to lactose. However, in vivo, unlike lactose, the 75/3B12 antibody protected mice from ricin toxicity.  相似文献   

20.
1. Variant baby-hamster kidney (BHK) cell lines were isolated that grow in the presence of high concentrations of ricin, the toxic lectin of castor beans (Ricinus communis). The variant lines were independently derived from several cultures of normal BHK cells which had been exposed to the mutagen, methyl-N-nitro-N-nitrosoguanidine, before selection by ricin. 2. The cell lines maintain a high degree of resistance to ricin after growth in lectin-free medium for prolonged periods and therefore exhibit stable phenotypes that are different from normal BHK cells. 3. A preliminary classification of the phenotypes was made. Several cell lines bind normal amounts of 125I-labelled ricin, whereas other bind the lectin poorly. 4. A loss of surface receptors for two other lectins, R. communis RCA and Axinella polyploides, which have specificities similar to ricin, was also found in some but not all of the cell lines showing decreased surface concentrations of ricin receptors. 5. The binding to the ricin-resistant cells of lectins of different sugar specificity, namely Lens culinaris lectin and concanavalin A, was similar to, or higher than, to normal BHK cells. 6. Several of the ricin-resistant cell lines were shown to be cross-resistant to the weak cytotoxicity of Phaseolus vulgaris lectin. By contrast, some cell lines were more sensitive to concanavalin A than were normal BHK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号