首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) is the largest multiprotein enzyme complex of the respiratory chain. The nuclear-encoded NDUFS8 (TYKY) subunit of complex I is highly conserved among eukaryotes and prokaryotes and contains two 4Fe4S ferredoxin consensus patterns, which have long been thought to provide the binding site for the iron-sulfur cluster N-2. The NDUFS8 cDNA contains an open reading frame of 633 bp, coding for 210 amino acids. Cycle sequencing of amplified NDUFS8 cDNA of 20 patients with isolated enzymatic complex I deficiency revealed two compound heterozygous transitions in a patient with neuropathologically proven Leigh syndrome. The first mutation was a C236T (P79L), and the second mutation was a G305A (R102H). Both mutations were absent in 70 control alleles and cosegregated within the family. A progressive clinical phenotype proceeding to death in the first months of life was expressed in the patient. In the 19 other patients with enzymatic complex I deficiency, no mutations were found in the NDUFS8 cDNA. This article describes the first molecular genetic link between a nuclear-encoded subunit of complex I and Leigh syndrome.  相似文献   

2.
Reduced nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) is the largest complex of the mitochondrial respiratory chain and complex I deficiency accounts for approximately 30% cases of respiratory-chain deficiency in humans. Only seven mitochondrial DNA genes, but >35 nuclear genes encode complex I subunits. In an attempt to elucidate the molecular bases of complex I deficiency, we studied the six most-conserved complex I nuclear genes (NDUFV1, NDUFS8, NDUFS7, NDUFS1, NDUFA8, and NDUFB6) in a series of 36 patients with isolated complex I deficiency by denaturing high-performance liquid chromatography and by direct sequencing of the corresponding cDNA from cultured skin fibroblasts. In 3/36 patients, we identified, for the first time, five point mutations (del222, D252G, M707V, R241W, and R557X) and one large-scale deletion in the NDUFS1 gene. In addition, we found six novel NDUFV1 mutations (Y204C, C206G, E214K, IVS 8+41, A432P, and del nt 989-990) in three other patients. The six unrelated patients presented with hypotonia, ataxia, psychomotor retardation, or Leigh syndrome. These results suggest that screening for complex I nuclear gene mutations is of particular interest in patients with complex I deficiency, even when normal respiratory-chain-enzyme activities in cultured fibroblasts are observed.  相似文献   

3.
While diagnosis and genetic analysis of mitochondrial disorders has made remarkable progress, we still do not understand how given molecular defects are correlated to specific patterns of symptoms and their severity. Towards resolving this dilemma for the largest and therefore most affected respiratory chain enzyme, we have established the yeast Yarrowia lipolytica as a eucaryotic model system to analyse respiratory chain complex I. For in vivo analysis, eYFP protein was attached to the 30-kDa subunit to visualize complex I and mitochondria. Deletions strains for nuclear coded subunits allow the reconstruction of patient alleles by site-directed mutagenesis and plasmid complementation. In most of the pathogenic mutations analysed so far, decreased catalytic activities, elevated K(M) values, and/or elevated I(50) values for quinone-analogous inhibitors were observed, providing plausible clues on the pathogenic process at the molecular level. Leigh mutations in the 49-kDa and PSST homologous subunits are found in regions that are at the boundaries of the ubiquinone-reducing catalytic core. This supports the proposed structural model and at the same time identifies novel domains critical for catalysis. Thus, Y. lipolytica is a useful lower eucaryotic model that will help to understand how pathogenic mutations in complex I interfere with enzyme function.  相似文献   

4.
Additional characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, in the mitochondria of Trypanosoma brucei brucei has been obtained. Both proline:cytochrome c reductase and NADH:ubiquinone oxidoreductase of procyclic T. brucei were inhibited by the specific inhibitors of complex I rotenone, piericidin A, and capsaicin. These inhibitors had no effect on succinate: cytochrome c reductase activity. Antimycin A, a specific inhibitor of the cytochrome bc1 complex (ubiquinol:cytochrome c oxidoreductase), blocked almost completely cytochrome c reductase activity with either proline or succinate as electron donor, but had no inhibitory effect on NADH:ubiquinone oxidoreductase activity. The rotenone-sensitive NADH:ubiquinone oxidoreductase of procyclic T. brucei was partially purified by sucrose density centrifugation of mitochondria solubilized with dodecyl-beta-D-maltoside, with an approximately eightfold increase in specific activity compared to that of the mitochondrial membranes. Four polypeptides of the partially purified enzyme were identified as the homologous subunits of complex I (51 kDa, PSST, TYKY, and ND4) by immunoblotting with antibodies raised against subunits of Paracoccus denitrificans and against synthetic peptides predicted from putative complex I subunit genes encoded by mitochondrial and nuclear T. brucei DNA. Blue Native polyacrylamide gel electrophoresis of T. brucei mitochondrial membrane proteins followed by immunoblotting revealed the presence of a putative complex I with a molecular mass of 600 kDa, which contains a minimum of 11 polypeptides determined by second-dimensional Tricine-SDS/PAGE including the 51 kDa, PSST and TYKY subunits.  相似文献   

5.
Numerous hydrophobic and amphipathic compounds including several detergents are known to inhibit the ubiquinone reductase reaction of respiratory chain complex I (proton pumping NADH:ubiquinone oxidoreductase). Guided by the X-ray structure of the peripheral arm of complex I from Thermus thermophilus we have generated a large collection of site-directed mutants in the yeast Yarrowia lipolytica targeting the proposed ubiquinone and inhibitor binding pocket of this huge multiprotein complex at the interface of the 49-kDa and PSST subunits. We could identify a number of residues where mutations changed I(50) values for representatives from all three groups of hydrophobic inhibitors. Many mutations around the domain of the 49-kDa subunit that is homologous to the [NiFe] centre binding region of hydrogenase conferred resistance to DQA (class I/type A) and rotenone (class II/type B) indicating a wider overlap of the binding sites for these two types of inhibitors. In contrast, a region near iron-sulfur cluster N2, where the binding of the n-alkyl-polyoxyethylene-ether detergent C(12)E(8) (type C) was exclusively affected, appeared comparably well separated. Taken together, our data provide structure-based support for the presence of distinct but overlapping binding sites for hydrophobic inhibitors possibly extending into the ubiquinone reduction site of mitochondrial complex I.  相似文献   

6.
Clinical and molecular findings in children with complex I deficiency   总被引:12,自引:0,他引:12  
Isolated complex I deficiency, the most frequent OXPHOS disorder in infants and children, is genetically heterogeneous. Mutations have been found in seven mitochondrial DNA (mtDNA) and eight nuclear DNA encoded subunits, respectively, but in most of the cases the genetic basis of the biochemical defect is unknown. We analyzed the entire mtDNA and 11 nuclear encoded complex I subunits in 23 isolated complex I-deficient children, classified into five clinical groups: Leigh syndrome, progressive leukoencephalopathy, neonatal cardiomyopathy, severe infantile lactic acidosis, and a miscellaneous group of unspecified encephalomyopathies. A genetic definition was reached in eight patients (35%). Mutations in mtDNA were found in six out of eight children with Leigh syndrome, indicating a prevalent association between this phenotype and abnormalities in ND genes. In two patients with leukoencephalopathy, homozygous mutations were detected in two different nuclear-encoded complex I genes, including a novel transition in NDUFS1 subunit. In addition to these, a child affected by mitochondrial encephalomyopathy had heterozygous mutations in NDUFA8 and NDUFS2 genes, while another child with neonatal cardiomyopathy had a complex rearrangement in a single NDUFS7 allele. The latter cases suggest the possibility of unconventional patterns of inheritance in complex I defects.  相似文献   

7.
Leigh syndrome (LS) is a progressive neurodegenerative disease caused by either mitochondrial or nuclear DNA mutations resulting in dysfunctional mitochondrial energy metabolism. Mutations in genes encoding for subunits of the respiratory chain or assembly factors of respiratory chain complexes are often documented in LS cases. Nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) enzyme deficiencies account for a significant proportion of mitochondrial disorders, including LS. In an attempt to expand the repertoire of known mutations accounting for LS, we describe the clinical, radiological, biochemical and molecular data of six patients with LS found to have novel mutations in two complex I subunits (NDUFV1 and NDUFS2). Two siblings were homozygous for the previously undescribed R386C mutation in NDUFV1, one patient was a compound heterozygote for the R386C mutation in NDUFV1 and a frameshift mutation in the same gene, one patient was a compound heterozygote for the R88G and R199P mutations in NDUFV1, and two siblings were compound heterozygotes for an undescribed E104A mutation in NDUFS2. After the novel mutations were identified, we employed prediction models using protein conservation analysis (SIFT, PolyPhen and UCSC genome browser) to determine pathogenicity. The R386C, R88G, R199P, and E104A mutations were found to be likely pathogenic, and thus presumably account for the LS phenotype. This case series broadens our understanding of the etiology of LS by identifying new molecular defects that can result in complex I deficiency and may assist in targeted diagnostics and/or prenatal diagnosis of LS in the future.  相似文献   

8.
9.
We have analyzed a series of eleven mutations in the 49-kDa protein of mitochondrial complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica to identify functionally important domains in this central subunit. The mutations were selected based on sequence homology with the large subunit of [NiFe] hydrogenases. None of the mutations affected assembly of complex I, all decreased or abolished ubiquinone reductase activity. Several mutants exhibited decreased sensitivities toward ubiquinone-analogous inhibitors. Unexpectedly, seven mutations affected the properties of iron-sulfur cluster N2, a prosthetic group not located in the 49-kDa subunit. In three of these mutants cluster N2 was not detectable by electron-paramagnetic resonance spectroscopy. The fact that the small subunit of hydrogenase is homologous to the PSST subunit of complex I proposed to host cluster N2 offers a straightforward explanation for the observed, unforeseen effects on this iron-sulfur cluster. We propose that the fold around the hydrogen reactive site of [NiFe] hydrogenase is conserved in the 49-kDa subunit of complex I and has become part of the inhibitor and ubiquinone binding region. We discuss that the fourth ligand of iron-sulfur cluster N2 missing in the PSST subunit may be provided by the 49-kDa subunit.  相似文献   

10.
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) undergoes reversible deactivation upon incubation at 30-37 degrees C. The active/deactive transition could play an important role in the regulation of complex I activity. It has been suggested recently that complex I may become modified by S-nitrosation under pathological conditions during hypoxia or when the nitric oxide:oxygen ratio increases. Apparently, a specific cysteine becomes accessible to chemical modification only in the deactive form of the enzyme. By selective fluorescence labeling and proteomic analysis, we have identified this residue as cysteine-39 of the mitochondrially encoded ND3 subunit of bovine heart mitochondria. Cysteine-39 is located in a loop connecting the first and second transmembrane helix of this highly hydrophobic subunit. We propose that this loop connects the ND3 subunit of the membrane arm with the PSST subunit of the peripheral arm of complex I, placing it in a region that is known to be critical for the catalytic mechanism of complex I. In fact, mutations in three positions of the loop were previously reported to cause Leigh syndrome with and without dystonia or progressive mitochondrial disease.  相似文献   

11.
Complex I (NADH:ubiquinone oxidoreductase) has a central function in oxidative phosphorylation and hence for efficient ATP production in most prokaryotic and eukaryotic cells. This huge membrane protein complex transfers electrons from NADH to ubiquinone and couples this exergonic redox reaction to endergonic proton pumping across bioenergetic membranes. Although quinone reduction seems to be critical for energy conversion, this part of the reaction is least understood. Here we summarize and discuss experimental evidence indicating that complex I contains an extended ubiquinone binding pocket at the interface of the 49-kDa and PSST subunits. Close to iron–sulfur cluster N2, the proposed immediate electron donor for ubiquinone, a highly conserved tyrosine constitutes a critical element of the quinone reduction site. A possible quinone exchange path leads from cluster N2 to the N-terminal β-sheet of the 49-kDa subunit. We discuss the possible functions of a highly conserved HRGXE motif and a redox–Bohr group associated with cluster N2. Resistance patterns observed with a large number of point mutations suggest that all types of hydrophobic complex I inhibitors also act at the interface of the 49-kDa and the PSST subunit. Finally, current controversies regarding the number of ubiquinone binding sites and the position of the site of ubiquinone reduction are discussed.  相似文献   

12.
We evaluated a patient, born after a normal 38-week pregnancy, with psychomotor retardation, poor coordination of ocular movements, recurrent vomiting and severe lactic acidosis. The patient was admitted to hospital at 2 months of age because of a mitochondrial-like syndrome and died at the age of 4.5 months. Array-comparative genomic hybridization (a-CGH) analysis revealed a homozygous deletion in 5q11.2 involving NADH dehydrogenase (ubiquinone) Fe–S protein 4, 18 kDa (NADH-coenzyme Q reductase; NDUFS4). Both parents were heterozygous for the mutation. The array revealed a deletion of ~ 32 kb that includes exon 2 of NDUFS4 subsequently confirmed by real time-PCR and multiplex PCR. NDUFS4 was previously correlated to Leigh syndrome since mutations in this gene block the assembly of complex I. This result demonstrates the relevance of a-CGH screening in patients affected by metabolic disorders of unknown etiology.  相似文献   

13.
Here we present a first assessment of the subunit inventory of mitochondrial complex I from the obligate aerobic yeast Yarrowia lipolytica. A total of 37 subunits were identified. In addition to the seven central, nuclear coded, and the seven mitochondrially coded subunits, 23 accessory subunits were found based on 2D electrophoretic and mass spectroscopic analysis in combination with sequence information from the Y. lipolytica genome. Nineteen of the 23 accessory subunits are clearly conserved between Y. lipolytica and mammals. The remaining four accessory subunits include NUWM, which has no apparent homologue in any other organism and is predicted to contain a single transmembrane domain bounded by highly charged extramembraneous domains. This structural organization is shared among a group of 7 subunits in the Y. lipolytica and 14 subunits in the mammalian enzyme. Because only five of these subunits display significant evolutionary conservation, their as yet unknown function is proposed to be structure- rather than sequence-specific. The NUWM subunit could be assigned to a hydrophobic subcomplex obtained by fragmentation and sucrose gradient centrifugation. Its position within the membrane arm was determined by electron microscopic single particle analysis of Y. lipolytica complex I decorated with a NUWM-specific monoclonal antibody.  相似文献   

14.
Proton-translocating NADH:ubiquinone oxidoreductase (complex I) is the largest and least understood enzyme of the respiratory chain. Complex I from bovine mitochondria consists of more than forty different polypeptides. Subunit PSST has been suggested to carry iron-sulfur center N-2 and has more recently been shown to be involved in inhibitor binding. Due to its pH-dependent midpoint potential, N-2 has been proposed to play a central role both in ubiquinone reduction and proton pumping. To obtain more insight into the functional role of PSST, we have analyzed site-directed mutants of conserved acidic residues in the PSST homologous subunit of the obligate aerobic yeast Yarrowia lipolytica. Mutations D136N and E140Q provided functional evidence that conserved acidic residues in PSST play a central role in the proton translocating mechanism of complex I and also in the interaction with the substrate ubiquinone. When Glu(89), the residue that has been suggested to be the fourth ligand of iron-sulfur center N-2 was changed to glutamine, alanine, or cysteine, the EPR spectrum revealed an unchanged amount of this redox center but was shifted and broadened in the g(z) region. This indicates that Glu(89) is not a ligand of N-2. The results are discussedin the light of structural similarities to the homologous [NiFe] hydrogenases.  相似文献   

15.
16.
Using a photoaffinity labeling technique, Nakamaru-Ogiso et al. demonstrated that fenpyroximate, a strong inhibitor of bovine heart mitochondrial NADH-ubiquinone oxidoreductase (complex I), binds to the ND5 subunit [Nakamaru-Ogiso, E., et al. (2003) Biochemistry 42, 746-754]. Considering that the main body of the ND5 subunit composed of transmembrane helixes 1-15 is located at the distal end of the membrane domain [Efremov, R. G., et al. (2010) Nature 465, 441-445], however, their result may be questionable. Because establishing the number and location of inhibitors and/or quinone binding sites in the membrane domain is necessary to elucidate the function of the enzyme, it is critical to clarify whether there is an additional inhibitor and/or quinone binding site besides the interface between the hydrophilic and membrane domains. We therefore performed photoaffinity labeling experiments using two newly synthesized fenpyroximate derivatives [[(125)I]-4-azidophenyl fenpyroximate ([(125)I]APF) and [(125)I]-3-azido-5-iodobenzyl fenpyroximate ([(125)I]AIF)] possessing a photoreactive azido group at and far from the pharmacophoric core moiety, respectively. Doubled sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that [(125)I]APF and [(125)I]AIF bind to the PSST and 49 kDa subunits, respectively. Careful examination of the fragmentation patterns of the labeled PSST and 49 kDa subunits generated by limited proteolysis indicated that the residues labeled by [(125)I]APF and [(125)I]AIF are located in the Ser43-Arg66 (PSST) and Asp160-Arg174 (49 kDa) regions, respectively, which face the supposed quinone-binding pocket formed at the interface of the PSST, 49 kDa, and ND1 subunits. We conclude that fenpyroximate does not bind to the distal end of the membrane domain but rather resides at the interface between the two domains in a manner such that the pharmacophoric pyrazole ring and side chain of the inhibitor orient toward the PSST and 49 kDa subunits, respectively. This study answers a critical question relating to complex I.  相似文献   

17.
Isolated complex I deficiency is a frequent cause of respiratory chain defects in childhood. In this study, we report our systematic approach with blue native PAGE (BN-PAGE) to study mitochondrial respiratory chain assembly in skin fibroblasts from patients with Leigh syndrome and CI deficiency. We describe five new NDUFS4 patients with a similar and constant abnormal BN-PAGE profile and present a meta-analysis of the literature. All NDUFS4 mutations that have been tested with BN-PAGE result in a constant and similar abnormal assembly profile with a complete loss of the fully assembled complex I usually due to a truncated protein and the loss of its canonical cAMP dependent protein kinase phosphorylation consensus site. We also report the association of abnormal brain MRI images with this characteristic BN-PAGE profile as the hallmarks of NDUFS4 mutations and the first founder NDUFS4 mutations in the North-African population.  相似文献   

18.
19.
20.
Defects in complex I due to mutations in mitochondrial DNA are associated with clinical features ranging from single organ manifestation like Leber hereditary optic neuropathy (LHON) to multiorgan disorders like mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Specific mutations cause overlap syndromes combining several phenotypes, but the mechanisms of their biochemical effects are largely unknown. The m.3376G>A transition leading to p.E24K substitution in ND1 with LHON/MELAS phenotype was modeled here in a homologous position (NuoH-E36K) in the Escherichia coli enzyme and it almost totally abolished complex I activity. The more conservative mutation NuoH-E36Q resulted in higher apparent K(m) for ubiquinone and diminished inhibitor sensitivity. A NuoH homolog of the m.3865A>G transition, which has been found concomitantly in the overlap syndrome patient with the m.3376G>A, had only a minor effect. Consequences of a primary LHON-mutation m.3460G>A affecting the same extramembrane loop as the m.3376G>A substitution were also studied in the E. coli model and were found to be mild. The results indicate that the overlap syndrome-associated m.3376G>A transition in MTND1 is the pathogenic mutation and m.3865A>G transition has minor, if any, effect on presentation of the disease. The kinetic effects of the NuoH-E36Q mutation suggest its proximity to the putative ubiquinone binding domain in 49kD/PSST subunits. In all, m.3376G>A perturbs ubiquinone binding, a phenomenon found in LHON, and decreases the activity of fully assembled complex I as in MELAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号