共查询到20条相似文献,搜索用时 12 毫秒
1.
Molecular characterization of a gene encoding a 72-kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp. israelensis. 总被引:16,自引:10,他引:16 下载免费PDF全文
A gene encoding a 72,357-dalton (Da) crystal protein of Bacillus thuringiensis var. israelensis was isolated from a native 75-MDa plasmid by the use of a gene-specific oligonucleotide probe. Bacillus megaterium cells harboring the cloned gene (cryD) produced significant amounts of the 72-kDa protein (CryD), and the cells were highly toxic to mosquito larvae. In contrast, cryD-containing Escherichia coli cells did not produce detectable levels of the 72-kDa CryD protein. The sequence of the CryD protein, as deduced from the sequence of the cryD gene, was found to contain regions of homology with two previously described B. thuringiensis crystal proteins: a 73-kDa coleopteran-toxic protein and a 66-kDa lepidopteran- and dipteran-toxic protein of B. thuringiensis subsp. kurstaki. A second gene encoding the B. thuringiensis subsp. israelensis 28-kDa crystal protein was located approximately 1.5 kilobases upstream from and in the opposite orientation to the cryD gene. 相似文献
2.
M Trisrisook S Pantuwatana A Bhumiratana W Panbangred 《Applied and environmental microbiology》1990,56(6):1710-1716
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
Molecular cloning of the 130-kilodalton mosquitocidal delta-endotoxin gene of Bacillus thuringiensis subsp. israelensis in Bacillus sphaericus. 总被引:1,自引:1,他引:1 下载免费PDF全文
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. 总被引:6,自引:0,他引:6 下载免费PDF全文
The genes cryIVA and cryIVD, encoding 134- and 72-kDa proteins, respectively, and the gene for a regulatory 20-kDa polypeptide of Bacillus thuringiensis subsp. israelensis (serovar H14) were cloned in all seven possible combinations by the Escherichia coli expression vectors pT7 and pUHE. The four combinations containing cryIVA (cryIVA alone, with cryIVD, with the 20-kDa-protein gene, and with both) displayed high levels of mosquito larvicidal activity in pUHE. The toxicity of the combination of cryIVA and cryIVD, with or without the 20-kDa-protein gene, was higher than has ever been achieved with delta-endotoxin genes in recombinant E. coli. Fifty percent lethal concentrations against third-instar Aedes aegypti larvae for these clones decreased (i.e., toxicity increased) continuously to about 3 x 10(5) cells ml-1 after 4 h of induction. Larvicidal activities, obtained after 30 min of induction, were lower for clones in pT7 and decreased for an additional 3.5 h. Induction of either cryIVD or the 20-kDa-protein gene alone resulted in no larvicidal activity in either pT7 or pUHE20. Cloned together, these genes were slightly toxic in pT7 but not in pUHE20. Five minutes of induction of this combination (cryIVD with the 20-kDa-protein gene) in pT7 yielded a maximal mortality of about 40%, which decreased rapidly and disappeared completely after 50 min. CryIVD is thus apparently degraded in E. coli and partially stabilized by the 20-kDa regulatory protein. Larvicidal activity of the combination of cryIVA and cryIVD was sevenfold higher than that of cryIVA alone, probably because of the cross-stabilization of the polypeptides or the synergism between their activities. 相似文献
5.
C J Walther G A Couche M A Pfannenstiel S E Egan L A Bivin K W Nickerson 《Applied and environmental microbiology》1986,52(4):650-653
Vegetative Bacillus thuringiensis subsp. israelensis cells (6 X 10(5)/ml) achieved 100% mortality of Aedes aegypti larvae within 24 h. This larvicidal potential was localized within the cells; the cell-free supernatants did not kill mosquito larvae. However, they did contain a heat-labile hemolysin which was immunologically distinct from the general cytolytic (hemolytic) factor released during solubilization of B. thuringiensis subsp. israelensis crystals. The larvicidal potential of the vegetative cells was not due to poly-beta-hydroxybutyrate. Instead, it correlated with the ability of vegetative cells to sporulate during the bioassays. No toxicity was observed when bioassays were conducted in the presence of chloramphenicol or streptomycin. It is unlikely that the vegetative cells sporulate in the alkaline (pH 9.5 to 10.5) larval guts after ingestion. B. thuringiensis subsp. israelensis is not an alkalophile; we have been unable to grow it in culture at pH values of greater than or equal to 9.5. Moreover, we have been unable to demonstrate formation of a protective capsule. However, bacteria may replicate in the gut fluids of dead or dying mosquito larvae because their alkaline gut pH values drop markedly after exposure to the B. thuringiensis subsp. israelensis crystal toxins. 相似文献
6.
Analysis of mosquito larvicidal potential exhibited by vegetative cells of Bacillus thuringiensis subsp. israelensis. 总被引:1,自引:0,他引:1 下载免费PDF全文
C J Walther G A Couche M A Pfannenstiel S E Egan L A Bivin K W Nickerson 《Applied microbiology》1986,52(4):650-653
Vegetative Bacillus thuringiensis subsp. israelensis cells (6 X 10(5)/ml) achieved 100% mortality of Aedes aegypti larvae within 24 h. This larvicidal potential was localized within the cells; the cell-free supernatants did not kill mosquito larvae. However, they did contain a heat-labile hemolysin which was immunologically distinct from the general cytolytic (hemolytic) factor released during solubilization of B. thuringiensis subsp. israelensis crystals. The larvicidal potential of the vegetative cells was not due to poly-beta-hydroxybutyrate. Instead, it correlated with the ability of vegetative cells to sporulate during the bioassays. No toxicity was observed when bioassays were conducted in the presence of chloramphenicol or streptomycin. It is unlikely that the vegetative cells sporulate in the alkaline (pH 9.5 to 10.5) larval guts after ingestion. B. thuringiensis subsp. israelensis is not an alkalophile; we have been unable to grow it in culture at pH values of greater than or equal to 9.5. Moreover, we have been unable to demonstrate formation of a protective capsule. However, bacteria may replicate in the gut fluids of dead or dying mosquito larvae because their alkaline gut pH values drop markedly after exposure to the B. thuringiensis subsp. israelensis crystal toxins. 相似文献
7.
A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. 总被引:15,自引:7,他引:15 下载免费PDF全文
The 27-kilodalton (kDa) mosquitocidal protein gene from Bacillus thuringiensis subsp. israelensis has been cloned as a 10-kilobase (kb) HindIII fragment from plasmid DNA; efficient expression in Escherichia coli KM1 depends on a region of DNA located approximately 4 kb upstream (K. McLean and H. R. Whiteley, J. Bacteriol. 169:1017-1023, 1987). We have cloned the upstream DNA region and show that it contains a complete open reading frame (ORF) encoding a protein with a molecular mass of 19,584 Da. Sequencing of adjacent stretches of DNA revealed two partial ORFs: one has 55.2% identity in an overlap of 319 amino acids to the putative transposase of IS231 of B. thuringiensis subsp. thuringiensis, and the other, a 78-codon partial ORF, may be the carboxyl terminus of the 67-kDa protein previously observed in maxicells of strain KM1. A 0.8-kb fragment containing only the 20-kDa protein gene greatly enhanced the expression of the 27-kDa protein in E. coli. The introduction of nonsense codons into the 20-kDa protein gene ORF abolished this effect, indicating that the gene product, not the mRNA or DNA, is required for the enhancement. The effect of the 20-kDa protein gene on various fusions of lacZ to the 27-kDa protein gene suggests that the 20-kDa protein acts after the initiation of translation of the 27-kDa protein gene. 相似文献
8.
Strains of Bacillus thuringiensis such as B. thuringiensis subsp. israelensis (ONR-60A) and B. thuringiensis subsp. morrisoni (PG-14) pathogenic for mosquito larvae produce a complex parasporal body consisting of several protein endotoxins synthesized during sporulation that form an aggregate of crystalline inclusions bound together by a multilamellar fibrous matrix. Most studies of these strains focus on the molecular biology of the endotoxins, and although it is known that parasporal body structural integrity is important to achieving high toxicity, virtually nothing is known about the matrix that binds the toxin inclusions together. In the present study, we undertook a proteomic analysis of this matrix to identify proteins that potentially mediate assembly and stability of the parasporal body. In addition to fragments of their known major toxins, namely, Cry4Aa, Cry4Ba, Cry11Aa, and Cyt1Aa, we identified peptides with 100% identity to regions of Bt152, a protein coded for by pBtoxis of B. thuringiensis subsp. israelensis, the plasmid that encodes all endotoxins of this subspecies. As it is known that the Bt152 gene is expressed in B. thuringiensis subsp. israelensis, we disrupted its function and showed that inactivation destabilized the parasporal body matrix and, concomitantly, inclusion aggregation. Using fluorescence microscopy, we further demonstrate that Bt152 localizes to the parasporal body in both strains, is absent in other structural or soluble components of the cell, including the endospore and cytoplasm, and in ligand blots binds to purified multilamellar fibrous matrix. Together, the data show that Bt152 is essential for stability of the parasporal body of these strains. 相似文献
9.
Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. 总被引:4,自引:1,他引:4 下载免费PDF全文
The cytA gene encoding the 28-kDa polypeptide of Bacillus thuringiensis subsp. israelensis crystals was disrupted in the 72-MDa resident plasmid by in vivo recombination, thus indicating that homologous recombination occurs in B. thuringiensis. The absence of the 28-kDa protein in B. thuringiensis did not affect the crystallization of the other toxic components of the parasporal body (68-, 125-, and 135-kDa polypeptides). The absence of the 28-kDa protein abolished the hemolytic activity of B. thuringiensis subsp. israelensis crystals. However, the mosquitocidal activity of the 28-kDa protein-free crystals did not differ significantly from that of the wild-type crystals when tested on Aedes aegypti and Culex pipiens larvae. The 28-kDa protein contributed slightly to the toxicity to Anopheles stephensi larvae. This indicates that the 28-kDa protein is not essential for mosquitocidal activity, at least against the three species tested. 相似文献
10.
From Bacillus thuringiensis subsp. israelensis, a proteinase-resistant protein was purified which exhibited toxicity to larval mosquitoes and cultured mosquito cells, lysed erythrocytes, and was lethal to mice. To extract the protein, a sporulating culture of B. thuringiensis subsp. israelensis was treated with alkali, neutralized, and incubated with trypsin and proteinase K. It was then purified by gel filtration and DEAE column chromatography. Up to 240 micrograms of toxic protein was purified from 1 g (wet weight) of culture pellet. Two closely related forms of toxic protein were obtained: the 25a and 25b proteins. The two forms comigrated near 25,000 daltons in a sodium dodecyl sulfate-polyacrylamide gel, were serologically related, and showed similar partial protease digestion profiles, but were distinguishable by DEAE chromatography and nondenaturing polyacrylamide gel electrophoresis. Protein sequencing data indicated the 25b protein lacked the two amino acids at the amino terminus of the 25a protein. A Western blot enzyme-linked immunosorbent assay of alkali-solubilized proteins that were not treated with proteases suggested the toxic 25a and 25b proteins were proteolytically derived from a larger molecule of about 28,000 daltons. Alkali-solubilized proteins from an acrystalliferous strain of B. thuringiensis subsp. israelensis and from B. thuringiensis subsp. kurstaki failed to cross-react with antibodies to the 25a protein. 相似文献
11.
A 2.2-kb fragment containing a replicon from pBtoxis, the large plasmid that encodes the insecticidal endotoxins of Bacillus thuringiensis subsp. israelensis, was identified, cloned, and sequenced. This fragment contains cis elements, including iterons, found in replication origins of other large plasmids and suggests that pBtoxis replicates by a type A theta mechanism. Two genes, pBt156 and pBt157, encoding proteins of 54.4 kDa and 11.8 kDa, respectively, were present in an operon within this minireplicon, and each was shown by deletion analysis to be essential for replication. The deduced amino acid sequences of the 54.4-kDa and 11.8-kDa proteins showed no substantial homology with known replication (Rep) proteins. However, the 54.4-kDa protein contained a conserved FtsZ domain, and the 11.8 kDa protein contained a helix-turn-helix motif. As FtsZ proteins have known functions in bacterial cell division and the helix-turn-helix motif is present in Rep proteins, it is likely that these proteins function in plasmid replication and partitioning. The minireplicon had a copy number of two or three per chromosome equivalent in B. thuringiensis subsp. israelensis but did not replicate in B. cereus, B. megaterium, or B. subtilis. A plasmid constructed to synthesize large quantities of the Cry11A and Cyt1A endotoxins demonstrated that this minireplicon can be used to engineer vectors for cry and cyt gene expression. 相似文献
12.
Mosquito larvicidal activity of transgenic Anabaena PCC 7120 expressing toxin genes from Bacillus thuringiensis subsp. israelensis 总被引:1,自引:0,他引:1
Khasdan V Ben-Dov E Manasherob R Boussiba S Zaritsky A 《FEMS microbiology letters》2003,227(2):189-195
Genes encoding the mosquito larvicidal toxins Cry4Aa, Cry11Aa, Cyt1Aa and the regulatory P20 from Bacillus thuringiensis subsp. israelensis were introduced into the nitrogen-fixing, filamentous cyanobacterium Anabaena PCC 7120 for expression under control of two strong promoters P(psbA) and P(A1). The clone pRVE4-ADRC displayed toxicity against fourth-instar larvae of Aedes aegypti, the highest ever achieved in cyanobacteria. It was about 2.5-fold more toxic than the respective clone without cyt1Aa [Wu et al., Appl. Environ. Microbiol. 63 (1997) 4971-4975]. Cyt1Aa synergized the combination of Crys by about five-fold. Consistently, the lethal times exerted by pRVE4-ADRC were also reduced (it killed exposed larvae more quickly). This clone may become a useful biological control agent which reduces the probability of resistance development in the target organisms [Wirth et al., Proc. Natl. Acad. Sci. USA 94 (1997) 10536-10540]. 相似文献
13.
Mujin Tang Dennis K. Bideshi Hyun-Woo Park Brian A. Federici 《Applied microbiology》2006,72(11):6948-6954
A 2.2-kb fragment containing a replicon from pBtoxis, the large plasmid that encodes the insecticidal endotoxins of Bacillus thuringiensis subsp. israelensis, was identified, cloned, and sequenced. This fragment contains cis elements, including iterons, found in replication origins of other large plasmids and suggests that pBtoxis replicates by a type A theta mechanism. Two genes, pBt156 and pBt157, encoding proteins of 54.4 kDa and 11.8 kDa, respectively, were present in an operon within this minireplicon, and each was shown by deletion analysis to be essential for replication. The deduced amino acid sequences of the 54.4-kDa and 11.8-kDa proteins showed no substantial homology with known replication (Rep) proteins. However, the 54.4-kDa protein contained a conserved FtsZ domain, and the 11.8 kDa protein contained a helix-turn-helix motif. As FtsZ proteins have known functions in bacterial cell division and the helix-turn-helix motif is present in Rep proteins, it is likely that these proteins function in plasmid replication and partitioning. The minireplicon had a copy number of two or three per chromosome equivalent in B. thuringiensis subsp. israelensis but did not replicate in B. cereus, B. megaterium, or B. subtilis. A plasmid constructed to synthesize large quantities of the Cry11A and Cyt1A endotoxins demonstrated that this minireplicon can be used to engineer vectors for cry and cyt gene expression. 相似文献
14.
Inverted repeat sequences flank a Bacillus thuringiensis crystal protein gene. 总被引:8,自引:8,他引:8 下载免费PDF全文
Two sets of inverted repeat DNA sequences, IR2150 and IR1750, were discovered flanking the crystal protein gene on the 75-kilobase plasmid of Bacillus thuringiensis subsp. kurstaki HD73. A restriction map of ca. 40 kilobases around the crystal protein gene was constructed, and the positions of the copies of IR2150 and IR1750 were determined. Three copies of IR2150 were found flanking the crystal protein gene in an inverted orientation, and one partial and three intact copies of IR1750 were found in both inverted and direct orientations around the gene. Hybridization experiments with fragments from within IR2150 and IR1750 demonstrated the presence of multiple copies of these sequences on the chromosome of B. thuringiensis subsp. kurstaki HD73 and also revealed a strong correlation between the presence of these sequences and the presence of the crystal protein gene on plasmids from 14 strains of B. thuringiensis. 相似文献
15.
Swedish soil isolates biochemically classified as Bacillus thuringiensis subsp. israelensis were further examined for genetic diversity by multilocus enzyme electrophoresis (MLEE), random amplified polymorphic DNA
analysis (RAPD), pulse field gel electrophoresis (PFGE), and Southern blotting, and were compared with reference strains.
All the tested strains belonging to the Bt. israelensis serotype H14 were found to be identical, as judged from the RAPD analysis. MLEE analysis gave a similar result; only one
H14 strain was found to differ from the remaining H14 strains by one null allele. PFGE analysis confirmed a very close relationship
between the H14 strains but revealed an SfiI restriction fragment of variable size. Southern blot analyses were carried out with probes for the chromosomally encoded
flagellin gene(s) and the plasmid-encoded mosquitocidal toxins. All probes gave similar hybridization patterns in the H14
strains. The mosquito toxin probes hybridized only to the H14 strains, except for one probe hybridizing to strain 6:3, which
was originally isolated from the same soil sample as strains 6:11 and 6:12. Because the RAPD, MLEE, and PFGE analyses showed
that strain 6:3 appears to be unrelated to strains 6:11 and 6:12, the presence of a mosquito toxin sequence in strain 6:3
may suggest that gene transfer has occurred.
Received: 8 July 1999 / Accepted: 9 August 1999 相似文献
16.
M A Pfannenstiel G A Couche G Muthukumar K W Nickerson 《Applied and environmental microbiology》1985,50(5):1196-1199
The Bacillus thuringiensis subsp. israelensis mosquito larvicidal toxin is not a sulfhydryl-activated toxin. The protein disulfide bonds were cleaved and blocked without loss of toxicity. In contrast, modification of the lysine side chains eliminated toxicity. Additionally, the toxin was resistant to high concentrations of salt (8 M NaBr), organic solvents (40% methanol), denaturants (4 M urea), and neutral detergents (10% Triton X-100). However, it was inactivated by both positively and negatively charged detergents and by guanidine hydrochloride. 相似文献
17.
Role of the CryIVD polypeptide in the overall toxicity of Bacillus thuringiensis subsp. israelensis. 下载免费PDF全文
The gene encoding the CryIVD protein of B. thuringiensis subsp. israelensis crystals was disrupted by in vivo recombination. The toxicity of the CryIVD protein-free inclusions was similar to that of the wild-type crystals on Anopheles stephensi larvae but was half the wild-type toxicity on Culex pipiens and Aedes aegypti larvae. 相似文献
18.
Stability of the larvicidal activity of Bacillus thuringiensis subsp. israelensis: amino acid modification and denaturants. 总被引:3,自引:7,他引:3 下载免费PDF全文
The Bacillus thuringiensis subsp. israelensis mosquito larvicidal toxin is not a sulfhydryl-activated toxin. The protein disulfide bonds were cleaved and blocked without loss of toxicity. In contrast, modification of the lysine side chains eliminated toxicity. Additionally, the toxin was resistant to high concentrations of salt (8 M NaBr), organic solvents (40% methanol), denaturants (4 M urea), and neutral detergents (10% Triton X-100). However, it was inactivated by both positively and negatively charged detergents and by guanidine hydrochloride. 相似文献
19.
Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis. 总被引:3,自引:0,他引:3 下载免费PDF全文
Mosquitocidal Bacillus thuringiensis strains show as a common feature the presence of toxic proteins with cytolytic and hemolytic activities, Cyt1Aa1 being the characteristic cytolytic toxin of Bacillus thuringiensis subsp. israelensis. We have detected the presence of another cyt gene in this subspecies, highly homologous to cyt2An1, coding for the 29-kDa cytolytic toxin from B. thuringiensis subsp. kyushuensis. This gene, designated cyt2Ba1, maps upstream of cry4B coding for the 130-kDa crystal toxin, on the 72-MDa plasmid of strain 4Q2-72. Sequence analysis revealed, as a remarkable feature, a 5' mRNA stabilizing region similar to those described for some cry genes. PCR amplification and Southern analysis confirmed the presence of this gene in other mosquitocidal subspecies. Interestingly, anticoleopteran B. thuringiensis subsp. tenebrionis belonging to the morrisoni serovar also showed this gene. On the other hand, negative results were obtained with the anti-lepidopteran strains B. thuringiensis subsp. kurstaki HD-1 and subsp. aizawai HD-137. Western analysis failed to reveal Cyt2A-related polypeptides in B. thuringiensis subsp. israelensis 4Q2-72. However, B. thuringiensis subsp. israelensis 1884 and B. thuringiensis subsp. tenebrionis did show cross-reactive products, although in very small amounts. 相似文献