首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reconstructed barley karyotype (T-35) was utilised to study the influence of chromosomal rearrangements on the DNA methylation pattern at chromosome level. Data obtained were also compared with the distribution of Giemsa N-bands and high gene density regions along the individual chromosomes that have been previously described. In comparison to the control karyotype (T-1586), the DNA methylation pattern was found to vary not only in the reconstructed chromosomes but also in the other chromosomes of the complement. Significant remodelling process of methylation pattern was found also in the residual nucleolus organiser regions (NOR) on chromosome 5H as a consequence of deletion comprising the whole NOR of chromosome 6H in T-35. Moreover, differences between corresponding segments of the homologues with respect to some other chromosome locations were also observed. Repositioning of genomic DNA methylation along the metaphase chromosomes following chromosomal reconstruction in barley seems to be essential to ensure correct chromatin organisation and function.  相似文献   

2.
Summary The barley standard karyotype, two reconstructed karyotypes with all chromosomes interdistinguishable, and four translocation lines were treated with maleic hydrazide. A specific chromosomal site in satellite chromosome 7 (segment 44 adjacent to the nucleolus organizer region) of the standard karyotype was found to represent a deletion hot spot. A sample of specifically reconstructed karyotypes were used to check whether or not transposition of the hot spot region, or changes of its neighborhood, would affect its involvement in deletions. One of the seven karyotypes (translocation line T 505 with a pair of chromosomes having both nucleolus organizer regions and satellites in opposite arms) was without deletion clustering in segment 44. At the same time, a prominent Giemsa band close to the secondary constriction was absent from segment 44. These data show that the involvement in deletions of a certain chromosome segment is modifiable in certain cases by chromosome reconstruction. Similar observations have been made in Vicia faba.  相似文献   

3.
Akio Kusanagi 《Chromosoma》1966,20(1):125-132
The rate of DNA replication, as judged by H3-thymidine incorporation, at the specific time of the S-period in chromosomes of barley (Hakata No. 2) is studied by means of autoradiography.In the barley chromosomes, two different DNA units with respect to replication-time are distinguishable. The early replicating DNA is replicated at least within 1 hour ab init. of the S-period, and the late replicating DNA within 1/2 to 1 hour before the end of the S-period. The replication scarcely occurs in the middle of the S-period. These evidences suggest that the replication of chromosomal DNA in the present material does, therefore, not proceed in a continuous time sequence. Topographically, the early replicating DNA is almost confined exclusively to the distal regions of the chromosomes 1 and 5, and this situation seems applicable to other chromosomes as well, whereas the late replicating DNA is close to the centromere on its both sides. Hence, the replication of chromosomal DNA does not proceed uniformly in a longitudinal sequence along the chromosomes. The interrelationships among chromosome structure in its cytological expression, replication -pattern and -time of chromosomes, and regulating mechanisms of DNA replication are discussed.  相似文献   

4.
Mature embryos and seedlings from mature embryos of one standard and five reconstructed karyotypes of barley (Hordeum vulgare L.) were cultured in vitro to study the influence of repositioning of particular chromosome segments of barley genome on the regeneration response. A comparative analysis of the regeneration response of a reconstructed karyotype having complete and well characterized rearrangement of the chromosome complement, and its four parental lines were used as experimental material. Depending on the source of explants two systems of in vitro culture were applied. The regeneration ability was found to be significantly influenced by both chromosome reconstruction and protocol applied. Possible reasons underlying the effects of chromosomal reconstruction on the regeneration response of karyotypes are briefly discussed.  相似文献   

5.
A total of 52 reciprocal translocations and 9 pericentric inversions were induced and identified in both standard and cytologically marked barley karyotypes using gamma-rays as the clastogenic agent. An analysis based upon Giemsa N-banding patterns and arm length measurements of the reconstructed chromosomes enabled a rather precise cytological localization of intra- and interchange breakpoints. This analysis was significantly facilitated and improved, especially for the identification of pericentric inversions, when the reconstructed karyotype T-1586 was used as starting material. The majority, if not all, of the aberration breakpoints proved to be localized in interband regions or in medial and terminal parts of the chromosomes, i.e., in regions which are deficient in constitutive heterochromatin. A great number of the structural mutations produced in this study contain specific cytological markers covering nearly all of the chromosomes of barley karyotype. This material might be of considerable interest in solving various problems of barley cytogenetics and chromosome engineering and especially in constructing a physical map of barley genome.  相似文献   

6.
Tritiated ribosomal RNA (rRNA) was prepared from hypocotyls of Phaseolus coccineus grown in liquid culture in the dark and in presence of 5-3H-uridine. A mixture of the 18S and 25S 3H-rRNA fractions was used for hybridization with DNA in the polytene chromosome cells of the embryo suspensor of P. coccineus. It was shown that the ribosomal cistrons (rDNA) are located in the nucleolus organizing system (satellite, nucleolar constriction and organizer) of the satellited chromosome pairs I (S1) and V (S2), in the proximal heterochromatic segment of the long arm of chromosomes S1 and in the terminal heterochromatic segment of chromosome pair II. The micronucleoli which are produced by the satellite and nucleolus organizer of the chromosome pair S1 contain rDNA; on the contrary, no rRNA-DNA hybridization is found in the DNA containing granules which are produced by the satellite and nucleolus organizer of chromosome pair S2. The DNA which is amplified during production of DNA puffs at some chromosomal regions apparently does not code for ribosomal RNA (no detectable rRNA-DNA hybridization).Publication no. 62 from the Laboratorio di Mutagenesi e Differenziamento, Consiglio Nazionale delle Ricerche, Pisa. Part of the investigation was supported by Contract SC 001/076-69-1 BIAN between the European Atomic Energy Community and the University of Pisa, Institute of Genetics.  相似文献   

7.
Satellite sequences are an important part of the pericentromeric regions in mammalian genomes; they play a relevant role in chromosome stability and DNA hypomethylation of these sequences has been reported in ICF syndrome and in some cancers that are closely associated with chromosomal abnormalities. Epigenetic modifications of satellite sequences and their consequences have not been extensively studied in human cells. In the present work, we evaluated satellite 2 methylation patterns in human lymphocytes exposed to 5-azacytidine (5-azaC) and assessed the relationship between these patterns and chromosome missegregation. Human lymphocytes were exposed to 10μM 5-azaC for 24, 48, and 72h. Segregation errors were evaluated in binucleate cells using FISH against pericentromeric regions of chromosomes 1, 9, and 16. DNA methylation patterns were evaluated by immunodetection, and by bisulfite plus urea conversion and sequencing. We have identified that 5-azaC induced missegregation of chromosomes 1 and 16, which have highly methylated satellite 2, after 72h of exposure. Chromosome methylation patterns showed a notable decrease in pericentromeric methylation. Bisulfite conversion and sequencing analysis demonstrated demethylation of satellite 2 associated to 5-azaC exposure, principally after 72h of treatment. This change occurred in a non-specific pattern. Our study demonstrates an association between loss of satellite 2 DNA methylation and chromosome loss in human lymphocytes.  相似文献   

8.
Chromosome structure and chromatin organisation of a two-chromosome model cereal Zingeria biebersteiniana (Claus) P. Smirnov were studied: nuclear DNA content was determined by microdensitometric analysis after Feulgen staining; Feulgen absorption at different thresholds of absorbance in interphase nuclei also provided evidence on the organisation of chromatin, allowing quantitative estimation of condensed chromatin within interphasic nucleus. The DNA methylation pattern of Z. biebersteiniana metaphase chromosomes was examined with a specific monoclonal antibody. 5-methyl-cytosine residues are present in several chromosome sites and differences may be present between corresponding regions of homologues. Chromosome banding pattern reveals large bands in the centromeric regions of each chromosome, showing constitutive heterochromatin; by fluorochromes staining pericentromeric blocks are evidenced. After the cold and 9-aminoacridine pre-treatments and after aceto-carmine and aceto-orceine staining, respectively, the metaphase chromosomes were analysed by image analysis system revealing a segmentation of the chromosome body that resembles Giemsa/Reverse banding in animal chromosomes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The frequency and distribution of methylated cytosine (5-MeC) at CC T A GG (Dcm sites) in 49 E. coli DNA loci (207,530 bp) were determined. Principal observations of this analysis were: (1) Dcm frequency was higher than expected from random occurrence but lower than calculated with Markov chain analysis; (2) CCTGG sites were found more frequently in coding than in noncoding regions, while the opposite was true for CCAGG sites; (3) Dcm site distribution does not exhibit any identifiably regular pattern on the chromosome; (4) Dcm sites at oriC are probably not important for accurate initiation of DNA replication; (5) 5-MeC in codons was more frequently found in first than in second and third positions; (6) there are probably few genes in which the mutation rate is determined mainly by DNA methylation. It is proposed that the function of Dcm methylase is to protect chromosomal DNA from restriction-enzyme EcoRII. The Dcm methylation contribution to determine frequency of oligonucleotides, mutation rate, and recombination level, and thus evolution of the E. coli genome, could be interpreted as a consequence of the acquisition of this methylation.Correspondence to: M.C. Gómez-Eichelmann  相似文献   

10.

Background  

Establishment of chromosomal cytosine methylation and histone methylation patterns are critical epigenetic modifications required for heterochromatin formation in the mammalian genome. However, the nature of the primary signal(s) targeting DNA methylation at specific genomic regions is not clear. Notably, whether histone methylation and/or chromatin remodeling proteins play a role in the establishment of DNA methylation during gametogenesis is not known. The chromosomes of mouse neonatal spermatogonia display a unique pattern of 5-methyl cytosine staining whereby centromeric heterochromatin is hypo-methylated whereas chromatids are strongly methylated. Thus, in order to gain some insight into the relationship between global DNA and histone methylation in the germ line we have used neonatal spermatogonia as a model to determine whether these unique chromosomal DNA methylation patterns are also reflected by concomitant changes in histone methylation.  相似文献   

11.
The barley BARE-1 is a transcribed, copia-like retroelement with well-conserved functional domains, an active promoter, and a copy number of at least 3 × 104. We examined its chromosomal localization by in situ hybridization. The long terminal repeat (LTR) probe displayed a uniform hybridization pattern over the whole of all chromosomes, excepting paracentromeric regions, telomeres, and nucleolar organizer (NOR) regions. The integrase probe showed a similar pattern. The 5-untranslated leader (UTL) probe, expected to be the most rapidly evolving component, labeled chromosomes in a dispersed and non-uniform manner, concentrated in the distal regions, possibly indicating a targe site preference.  相似文献   

12.
3H-RNA, complementary to repetitive DNA of wheat, rye, barley, and oat, was hybridizedin situ to root tip or pollen mother cells of the species mentioned. The cRNAs hybridized best with the DNA in cell nuclei of the species from which they were prepared. Cross hybridization with cells of the other related species resulted in a significant but diminished labelling. Wheat, rye, and barley hybridized better to each other than to oat, andvice versa, in agreement with the usual taxonomical classification. Over the interphase nuclei the label was distributed unevenly; not all regions of dense chromatin were labelled, and little label was found over the nucleoli. On chromosomes, the repetitive DNA was located somewhere along the chromosome arms or near the centromers in wheat, barley, and oat. Only in rye, most of the label was located near the telomers, probably over the large heterochromatin areas.  相似文献   

13.
This study centers on marker chromosomes carrying expanded chromosomal regions which were observed in two independent derivatives of the AA12 murine fibrosarcoma line, the 10–3 M MTX-res H2 and the 5×10–7 M MTX-res E. Previous characterization of the marker chromosomes of MTX-res variants showed their common derivation from a marker chromosome (m) of the parental line, endowed with two interstitial C-bands. Cytogenetic evidence pointed to one C-band ofm as the site involved in the chromosomal rearrangements leading to the HSR/ASR chromosomes. ISH of a3H-labeled satellite DNA probe allowed satellite sequences flanking the HSR/ASR in the marker chromosomes, where the C-band was no longer visible, to be detected. FISH experiments using biotinylated DHFR and satellite DNA probes showed that the respective target sequences are contiguous in new marker chromosomes. They also allowed inter- and intrachromosomal rearrangements to be seen at DHFR amplicons and satellite sequences. Double-color FISH using digoxygenated satellite DNA and biotinylated pDHFR7 showed that in a marker chromosome from the H2 cell line the two target sequences are not only adjacent, but closer than 3 Mb, as indicated by overlapping of the different fluorescence signals given by the two probes. Another marker chromosome in the E variant was shown to display a mixed ladder structure consisting of a head-to-head tandem of irregularly-sized satellite DNA blocks, with two symmetrical interspersed DHFR clusters.Abbreviations DHFR dihydrofolate reductase - MTX Methotrexate - HSR Homogeneously Staining Region - ASR Abnormally Staining Region - DM Double Minute - ISH In Situ Hybridization - FISH FluorescenceIn Situ Hybridization  相似文献   

14.
Two standard karyotype barley lines and 18 lines with karyotypes reconstructed by means of induced reciprocal translocations have been studied with respect to nucleolus formation. The standard karyotype contains two pairs of satellite chromosomes (pairs 6 and 7). Five of the structurally changed karyotypes contain, as a result of reciprocal translocations between the standard satellite chromosomes, only one satellite chromosome pair, each chromosome with two satellites and two nucleolus organizing regions. Under these circumstances, only two of the four NORs are active in nucleolus formation while the other two — probably the transposed ones — remain inactive; hence the maximum number of primary nucleoli per nucleus is two. — When NORs are translocated to chromosomes with no NOR in the standard karyotyp, the normal pattern of nucleolus formation remains unchanged. The same is true after transposition of segments from other chromosomes to the satellites of the standard SAT-chromosome pairs 6 and 7. The results obtained are discussed with respect to effects of translocations on the activity and behaviour of nucleolus organizing regions.  相似文献   

15.
16.
The present paper describes a distribution of 5-methylcytosine-rich DNA in human metaphase chromosomes from PHA-stimulated lymphocytes. Immunocytochemical detection of 5-methylcytosine was carried out with monoclonal antibodies. Fluorescent signals were preferentially localized in certain chromosomal regions, corresponding to R-, some T-bands, pricentromeric heterochromatin, and short arms of acrocentric chromosomes. Specificity of fluorescent signals distribution along chromosomes allowed to describe a new type of human metaphase chromosomes banding pattern, which we call M-banding. Specific M-markers of landmarks were identified for each chromosome pair. The analysis of M-bands methylation status was carried out taking into account data available in literature on their nucleotide structure features, namely GC-rich H3 isochore content and CpG-islands concentration. According to our results, a high level of methylation is typical for the majority of GC-rich regions. However, certain bands of 6, 9, 10, 13, 15 chromosomes (6q15, 6q21, 6q23, 9p13, 9p22, 9p32, 10q24, 13q22, 15q15, 15q24) were shown to be hypomethylated, suggesting their special functional status in lymphocytes.  相似文献   

17.
We have investigated whether restriction endonucleases produce bands on human chromosomes by extracting DNA, using staining methods which are stoichiometric for DNA. Restriction enzymes that produce C-band patterns appear to remove DNA extensively from chromosome arms. In general, however, those restriction enzymes that produce G-bands do not extract DNA from chromosomes, and their effects are believed to be due to conformational change in the chromosomal DNA; in these cases, the chromosomal regions affected appear to be determined by the chromosome structure and not by the specificity of the enzyme. DNA loss from chromosomes due to digestion by restriction enzymes may in some cases be uniform, although a G-banding pattern is visible after Giemsa staining.  相似文献   

18.
Klaus Hägele 《Chromosoma》1970,31(1):91-138
The pattern of DNA-synthesis of the salivary gland chromosomes of Chironomus thummi thummi, Ch. th. piger, Ch. annularius, Ch. plumosus and Ch. melanotus was studied using H3-thymidine-autoradiography. Contrary to the previous conception the bands of the salivary gland chromosomes of Chironomus do not begin replication simultaneously. H3-thymidine incorporation in bands of high DNA content begins later than in bands with a lesser amount of DNA. This difference in time is very small in bands outside the kinetochore regions and not comparable to the asynchrony in replication of typical heterochromatin in the salivary gland chromosomes of Chironomus melanotus. Differences in the amount of DNA in homologous bands do not affect the onset of replication. — Bands of high DNA content are replicating during a longer time than those having less DNA. However, certain chromosome regions behave differently. In these regions bands of very low DNA content are synthesizing DNA during the whole replication cycle. Since no excessive increase of DNA could be observed in these regions it is supposed that in addition to the duplication of structural DNA an extra DNA is synthesized which disappears immediately from the chromosome. — At the end of the replication cycle in the salivary gland nuclei of the hybrid Chironomus th. thummi X Ch. th. piger a labeling pattern is found in the chromosomes of Ch. th. thummi which differs from that in the parental subspecies Ch. th. thummi.  相似文献   

19.
One of the best documented autosomal linkage associations in man is on chromosome 1p and in the mouse on chromosome 4. On mitotic chromosomes this genetic homology is shown more clearly by early replication banding (RBG; induced by incorporation of 5bromodeoxyuridine (BrdU) in the second half of the S phase) than by structural banding (induced on prefixed chromosomes by denaturation, RFA, or trypsin, GTG). To analyse this phenomenon in more detail, 11 chromosomal regions in man and the domestic cat with known genetic homology were compared. In four chromosome pairs RBG and GTG banding show the same degree of homology. In seven chromosome pairs the homology is more pronounced by RBG than by GTG banding. RFA banding does not reveal the same extent of homology as does RBG banding. These results clearly show a difference between the structural banding pattern, RFA and GTG, and the replication banding pattern, RBG. The following conclusions can be drawn: in chromosomal regions with homologous functions the DNA replicates in the same temporal order. Early replication banding (RBG) reveals a functional pattern in these regions which has been more strongly preserved during evolution than the underlying chromosomal DNA. Differences in chromosomal banding are most prominent in the GTG banding pattern, whereas similarities are most apparent in the RBG banding pattern.  相似文献   

20.
Summary Rumex acetosa (sorrel) is a dioecious plant with a XX/XY1Y2 sex chromosome system. Both the Y chromosomes are nearly entirely heterochromatic and it has been hypothesised that they can persist as chromocenters in male interphase nuclei. Using specific antibodies against 5-methylcytosine and histone H4 acetylated at terminal lysine 5, global levels of DNA methylation and histone acetylation were studied on the sex chromosomes and autosomes of both sexes. The heterochromatic Y chromosomes did not display a higher methylation level compared to the autosomes. The only prominent hypermethylation signals were found at two nucleolar organising regions located on the autosome pair V, as confirmed by in situ hybridisation with 25S rDNA probe and staining. Immunoanalysis of DNA methylation on female and male interphase nuclei neither revealed any sex-specific differences. Two active (silverpositive) nucleoli and two likely inactive nucleolar organising regions (displaying prominent methylation signals) were found in both sexes. In a fraction of nuclei isolated from leaf cells, two peripheral bodies strongly positive for 4,6-diamidino-2-phenylindole were observed only in males, never in females. These heterochromatin regions were depleted in histone H4 acetylation at terminal lysine 5 and corresponded, according to in situ hybridisation with a Y-chromosome-specific repetitive probe, to the two Y chromosomes. We conclude that the peripheral condensed bodies observed exclusively in male nuclei represent the constitutive heterochromatin of the Y chromosomes which is characterised by a substantial histone H4 underacetylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号