首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Skeletal muscles are a mosaic of slow and fast twitch myofibers. During embryogenesis, patterns of fiber type composition are initiated that change postnatally to meet physiological demand. To examine the role of the protein phosphatase calcineurin in the initiation and maintenance of muscle fiber types, we used a "Flox-ON" approach to obtain muscle-specific overexpression of the modulatory calcineurin-interacting protein 1 (MCIP1/DSCR1), an inhibitor of calcineurin. Myo-Cre transgenic mice with early skeletal muscle-specific expression of Cre recombinase were used to activate the Flox-MCIP1 transgene. Contractile components unique to type 1 slow fibers were absent from skeletal muscle of adult Myo-Cre/Flox-MCIP1 mice, whereas oxidative capacity, myoglobin content, and mitochondrial abundance were unaltered. The soleus muscles of Myo-Cre/Flox-MCIP1 mice fatigued more rapidly than the wild type as a consequence of the replacement of the slow myosin heavy chain MyHC-1 with a fast isoform, MyHC-2A. MyHC-1 expression in Myo-Cre/Flox-MCIP1 embryos and early neonates was normal. These results demonstrate that developmental patterning of slow fibers is independent of calcineurin, while the maintenance of the slow-fiber phenotype in the adult requires calcineurin activity.  相似文献   

11.
12.
13.
14.
15.
Adult skeletal muscle fibers can be categorized into fast and slow twitch subtypes based on specialized contractile and metabolic properties and on distinctive patterns of muscle gene expression. Muscle fiber-type characteristics are dependent on the frequency of motor nerve stimulation and are thought to be controlled by calcium-dependent signaling. The calcium, calmodulin-dependent protein phosphatase, calcineurin, stimulates slow fiber-specific gene promoters in cultured skeletal muscle cells, and the calcineurin inhibitor, cyclosporin A, inhibits slow fiber gene expression in vivo, suggesting a key role of calcineurin in activation of the slow muscle fiber phenotype. Calcineurin has also been shown to induce hypertrophy of cardiac muscle and to mediate the hypertrophic effects of insulin-like growth factor-1 on skeletal myocytes in vitro. To determine whether activated calcineurin was sufficient to induce slow fiber gene expression and hypertrophy in adult skeletal muscle in vivo, we created transgenic mice that expressed activated calcineurin under control of the muscle creatine kinase enhancer. These mice exhibited an increase in slow muscle fibers, but no evidence for skeletal muscle hypertrophy. These results demonstrate that calcineurin activation is sufficient to induce the slow fiber gene regulatory program in vivo and suggest that additional signals are required for skeletal muscle hypertrophy.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号