首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nerve cells are very susceptible to hypoxia responsive for mitochondrial dysfunctions involved in the subsequent oxidative stress, apoptosis and necrosis. In this paper, we examined the effect of 12 h incubation of U-373 MG astrocytes in hypoxic environment (73% N2: 2% O2: 5% CO2, v:v) by evaluating cell proliferation, modifications of NO and ATP production, intracellular Ca2+ concentration [Ca2+]i, membrane potential, desferoxamine-chelatable free iron, esterified F2-isoprostanes levels and the production of phosphorylated ERK. The same parameters were evaluated also after a following re-oxygenation period of 24 h. Immediately after hypoxia the NO concentration increased significantly and returned to values similar to those of controls after the re-oxygenation period. At the same time, ATP levels remained similar to controls and the cell proliferation significantly decreased. This involved a significant increase of [Ca2+]i immediately after hypoxia and the value remained significantly elevated after the following re-oxygenation period. Moreover, after hypoxia, astrocytes were slightly although not significantly depolarized. Indeed iron and F2-isoprostanes levels increased significantly after hypoxia. Finally ERK proteins increased slowly and not significantly after hypoxia and the same trend was observed after the re-oxygenation period. On the whole, our results indicate that 2% O2 hypoxia induces a moderate oxidative stress, well tolerated by U-373 MG cells, remaining the ATP production, mitochondrial membrane potential and activated ERK proteins, similar to the values of controls.  相似文献   

2.
Nervous system cells are highly dependent on adequate tissue oxygenation and are very susceptible to hypoxia, which causes mitochondrial dysfunctions involved in apoptosis and necrosis. In this paper, we examine the effect of a 12-h incubation of differentiated IMR-32 neuroblastoma cells in a hypoxic environment (73% N2: 2% O2: 5% CO2, v:v) by evaluating cell viability, modifications of NO, intracellular Ca2+ concentration [Ca2+]i and membrane potential, the production of phosphorylated ERK, desferoxamine-chelatable free iron and esterified F2-isoprostane levels. The same parameters were evaluated after a subsequent 24-h re-oxygenation period. The NO concentration increased significantly immediately after hypoxia and returned to values similar to those of controls after the reoxygenation period. At the same time, we observed a significant increase of [Ca2+]i immediately after hypoxia. Phosphorylated ERK proteins increased significantly during the first 2 h of hypoxia, then decreased, and remained practically unmodified after 12 h hypoxia and the following reoxygenation period. Moreover, IMR-32 cell mitochondria were significantly depolarized after hypoxia, while membrane potential returned to normal after the reoxygenation period. Finally, desferoxamine-chelatable free iron and F2-isoprostane levels also increased significantly after hypoxia. Our results indicate that 2% O2 hypoxia induces variations of NO and [Ca2+]i with subsequent mitochondrial depolarization, and it is responsible for oxidative stress, represented by increased free iron and F2-isoprostane, protein carbonyls and 4 hydroxynonenal protein adducts levels.  相似文献   

3.
The purpose of this study was to appreciate the acute hypoxia-induced mitochondrial oxidative damage development and the role of adaptation to hypoxia/hyperoxia (H/H) in correction of mitochondrial dysfunction. It was demonstrated that long-term sessions of moderate H/H [5 cycles of 5 min hypoxia (10% O2 in N2) alternated with 5 min hyperoxia (30% O2 in N2) daily for two weeks]_attenuated basal and Fe2+/ascorbate-induced lipid peroxidation (LPO) as well as production of carbonyl proteins and H2O2 in liver mitochondria of rats exposed to acute severe hypoxia (7% O2 in N2, 60 min) in comparison with untreated animals. It was shown that H/H increases the activity of glutathione peroxidase (GPx), reduces hyperactivation of Mn-SOD, and decreases Cu,Zn-SOD activity as compared with untreated rats. It has been suggested that the induction of Mn-SOD protein expression and the coordinated action of Mn-SOD and GPx could be the mechanisms underlying protective effects of H/H, which promote the correction of the acute hypoxia-induced mitochondrial dysfunction. The increase in Mn-SOD protein synthesis without changes in Mn-SOD mRNA level under H/H pretreatment indicates that the Mn-SOD activity is most likely dependent on its posttranslational modification or on the redox state of liver mitochondria.  相似文献   

4.
The NO donor 3-Morpholinosydnonimine (SIN-1) releases NO in the presence of molecular oxygen. In this study, we evaluated the effect of SIN-1 on mitochondria of rat cortical synaptosomes. We demonstrated in vitro that the amount of ONOO generated and H2O2 formation directly correlated with SIN-1 concentration. The mean oxygen consumption by synaptosomal mitochondria was approximately 3.8 nmol of O2 min−1 mg−1 protein, which decreased significantly in the presence of SIN-1 1 mM to 2.5 nmol O2 min−1 mg−1. This decrease was not modified by catalase or Trolox, demonstrating that ONOO was responsible for the effect. The same concentration of SIN-1 caused a significant decrease of ATP production by synaptosomal mitochondria and depolarized the mitochondrial membrane. Moreover, ROS production increased progressively and was completely inhibited by pre-incubation of synaptosomes with Trolox. Finally, phosphatidylserine was externalized and, at the same time, intrasynaptosomal lactate dehydrogenase decreased confirming both, the external membrane breakdown after the addition of SIN-1 and the damage to the synaptosomes.  相似文献   

5.
This study was undertaken to evaluate whether chemical hypoxia-induced cell injury is a result of reactive oxygen species (ROS) generation, ATP depletion, mitochondrial permeability transition, and an increase in intracellular Ca2+, in A172 cells, a human glioma cell line. Chemical hypoxia was induced by incubating cells with antimycin A, an inhibitor of mitochondrial electron transport, in a glucose-free medium. Exposure of cells to chemical hypoxia resulted in cell death, ROS generation, ATP depletion, and mitochondrial permeability transition. The H2O2 scavenger pyruvate prevented cell death, ROS generation, and mitochondrial permeability transition induced by chemical hypoxia. In contrast, changes mediated by chemical hypoxia were not affected by hydroxyl radical scavengers. Antioxidants did not affect cell death and ATP depletion induced by chemical hypoxia, although they prevented ROS production and mitochondrial permeability transition induced by chemical hypoxia. Chemical hypoxia did not increase lipid peroxidation even when antimycin A was increased to 50 M, whereas the oxidant t-butylhydroperoxide caused a significant increase in lipid peroxidation, at a concentration that is less effective than chemical hypoxia in inducing cell death. Fructose protected against cell death and mitochondrial permeability transition induced by chemical hypoxia. However, ROS generation and ATP depletion were not prevented by fructose. Chemical hypoxia caused the early increase in intracellular Ca2+. The cell death and ROS generation induced by chemical hypoxia were altered by modulation of intracellular Ca2+ concentration with ruthenium red, TMB-8, and BAPTA/AM. However, mitochondrial permeability transition was not affected by these compounds. These results indicate that chemical hypoxia causes cell death, which may be, in part, mediated by H2O2 generation via a lipid peroxidation-independent mechanism and elevated intracellular Ca2+. In addition, these data suggest that chemical hypoxia-induced cell death is not associated directly with ATP depletion and mitochondrial permeability transition.  相似文献   

6.
The physiological role of the mitochondrial ATP synthase complex is to generate ATP through oxidative phosphorylation. Indeed, the enzyme can reverse its activity and hydrolyze ATP under ischemic conditions, as shown in isolated mitochondria and in mammalian heart and liver. However, what occurs when cancer cells experience hypoxia or anoxia has not been well explored. In the present study, we investigated the bioenergetics of cancer cells under hypoxic/anoxic conditions with particular emphasis on ATP synthase, and the conditions driving it to work in reverse. In this context, we further examined the role exerted by its endogenous inhibitor factor, IF1, that it is overexpressed in cancer cells. Metabolic and bioenergetic analysis of cancer cells exposed to severe hypoxia (down to 0.1% O2) unexpectedly showed that Δψm is preserved independently of the presence of IF1 and that ATP synthase still phosphorylates ADP though at a much lower rate than in normoxia. However, when we induced an anoxia-mimicking condition by collapsing ΔμΗ+ with the FCCP uncoupler, the IF1-silenced clones only reversed the ATP synthase activity hydrolyzing ATP in order to reconstitute the electrochemical proton gradient. Notably, in cancer cells IF1 overexpression fully prevents ATP synthase hydrolytic activity activation under uncoupling conditions. Therefore, our results suggest that IF1 overexpression promotes cancer cells survival under temporary anoxic conditions by preserving cellular ATP despite mitochondria dysfunction.  相似文献   

7.
Hypoxia affects the physiological behavior of rat cortical synaptosomes   总被引:1,自引:0,他引:1  
Nerve cells, especially synaptosomes, are very susceptible to hypoxia and the subsequent oxidative stress. In this paper, we examined the effects of hypoxia (93% N(2):2% O(2):5% CO(2), v/v/v) on rat cortical synaptosomes by evaluating modifications of synaptosomal mitochondrial respiration rate and ATP production, membrane potential, intrasynaptosomal mitochondrial Ca(2+) concentration ([Ca(2+)](i)), and desferoxamine-chelatable free iron and esterified F2-isoprostane levels after different periods of hypoxia and after 30 min of reoxygenation. Oxygen consumption decreased significantly during 120 min of hypoxia and was restored after reoxygenation. At the same time, ATP production decreased and remained significantly lower even after reoxygenation. This involved a depolarization of the synaptosomal mitochondrial membrane, although the [Ca(2+)](i) remained practically unchanged. Indeed, iron and F2-isoprostane levels, representing useful prediction markers for neurodevelopmental outcome, increased significantly after hypoxia, and there was a strong correlation between the two variables. On the whole our results indicate that synaptosomal mitochondria undergo mitoptosis after 2 h of hypoxia.  相似文献   

8.
The purpose of this study was to compare the influence of two regimes of intermittent hypoxia (IH) [repetitive 5 cycles of 5 min hypoxia (7% O2 or 12% O2 in N2) followed by 15 min normoxia, daily for three weeks] on oxidative stress protective systems in liver mitochondria. To estimate the effectiveness of hypoxia adaptation at the early and late preconditioning period, we exposed rats to acute 6-h immobilization at the 1st and 45th days after cessation of IH. We showed that severity of hypoxic episodes during IH might initiate different adaptive programs. Moderate hypoxia during IH prevents mitochondrial glutathione pool depletion induced by immobilization stress, maintains GSH-redox cycle via activation of glutathione peroxidase, glutathione-S-transferase, glutathione reductase, NADP+-dependent isocitrate dehydrogenase, and increases Mn-SOD activity. Such regimen of hypoxic preconditioning caused the decrease of mitochondrial superoxide anion generation as well as of basal and stimulated in vitro lipid peroxidation and this protective effect remained for 45 days under renormoxic conditions. Hypoxic adaptation in a more severe regimen exerted beneficial effects on the mitochondrial antioxidant defense system only at its later phase.  相似文献   

9.
Exposure of cultured bovine pulmonary artery endothelial cells to varying levels of hypoxia (10% or 0% O2) for 4 hours resulted in a significant dose-dependent inhibition in endothelial prostacyclin synthesis (51% and 98%, at the 10% and 0% O2 levels respectively, p <0.05, compared to 21% O2 exposure values). Release of 3H-arachidonic acid from cellular pools was not altered by hypoxia. Some of the cells were incubated with arachidonic acid (20 μM for 5 min) or PGH2 (4 μM for 2 min) immediately after exposure. Endothelium exposed to 0% O2, but not to 10% O2, produced significantly less prostacyclin after addition of either arachidonic acid (25 ± 5% of 21% O2 exposure values, n=6, p <0.01) or PGH2 (31 ± 3% of 21% O2 exposure values, n=6, p <0.05). These results suggest that hypoxia inhibits cyclooxygenase at the 10% O2 level and both cyclooxygenase and prostacyclin synthetase enzymes at the 0% O2 exposure levels. Exposure of aortic endothelial cells resulted in a 44% inhibition of prostacyclin at the 0% exposure level. No significant alteration in prostacyclin production was found in pulmonary vascular smooth muscle cells exposed to hypoxia. These data suggest that the increased prostacyclin production reported in lungs exposed to hypoxia is not due to a direct effect of hypoxia on the main prostacyclin producing cells of the pulmonary circulation.  相似文献   

10.
Mitochondrial ATP-sensitive K+ channels (mitoKATP) have been proposed to mediate protection against ischemic injury by increasing high-energy intermediate levels. This study was designed to verify if mitochondria are an important factor in the loss of cardiac ATP associated to ischemia, and determine the possible role of mitoKATP in the control of ischemic ATP loss. Langendorff-perfused rat hearts subjected to ischemia were found to have significantly higher ATP contents when pretreated with oligomycin or atractyloside, indicating that mitochondrial ATP hydrolysis contributes toward ischemic ATP depletion. MitoKATP opening induced by diazoxide promoted a similar protection against ATP loss. Diazoxide also inhibited ATP hydrolysis in isolated, nonrespiring mitochondria, an effect accompanied by a drop in the membrane potential and Ca2+ uptake. In hearts subjected to ischemia followed by reperfusion, myocardial injury was prevented by diazoxide, but not atractyloside or oligomycin, which, unlike diazoxide, decreased reperfusion ATP levels. Our results suggest that mitoKATP-mediated protection occurs due to selective inhibition of mitochondrial ATP hydrolysis during ischemia, without affecting ATP synthesis after reperfusion.  相似文献   

11.
Abstract: Previous studies have shown that a reduction in the O2 tension of the blood from 120 torr to 57 torr (hypoxic hypoxia) decreases brain acetylcholine (ACh) synthesis. To determine if this decrease is due to a direct impairment of ACh metabolism or to an indirect effect mediated by other neurotransmitter systems, we studied ACh formation in rat brain slices and synaptosomes. At O2 tensions ranging from 760 to less than 1 torr, 14CO2 production and [14C]ACh synthesis from [U-14C]glucose, the levels of lactate and ATP, and the ATP/ADP ratio were determined. In slices, the first decreases were observed in the rate of 14CO2 production and [14C]ACh synthesis at an O2 tension of 152 torr. The ATP level started to decline at 53–38 torr, and a reduction in the ATP/ADP ratio was first found at and below 19 torr. Lactate formation was maximally stimulated at 38–19 torr. Synaptosomes responded differently than brain slices to reduced O2 tensions. In synaptosomes, 14CO2 production and [14C]ACh synthesis from [U-14C]glucose, the levels of lactate and ATP, and the ATP/ADP ratio were unaltered if a minimum O2 tension of 19 torr was maintained. Despite the difference in sensitivities to decreases in O2 levels, there is a curvilinear relationship between [U-14C]glucose decarboxylation and [14C]ACh synthesis at various O2 tensions for both tissue preparations with a high coefficient of determination (R2= 0.970). The difference in the metabolic sensitivity of slices and synaptosomes to a reduced O2 level may be explained by the greater distance O2 must diffuse in slices. The results are discussed in comparison with hypoxia in vivo.  相似文献   

12.
Fertilization activates development by stimulating a plethora of ATP consuming processes that must be provided for by an up-regulation of energy production in the zygote. Sperm-triggered Ca2+ oscillations are known to be responsible for the stimulation of both ATP consumption and ATP supply but the mechanism of up regulation of energy production at fertilization is still unclear. By measuring [Ca2+] and [ATP] in the mitochondria of fertilized mouse eggs we demonstrate that sperm entry triggers Ca2+ oscillations in the cytosol that are transduced into mitochondrial Ca2+ oscillations pacing mitochondrial ATP production. This results, during fertilization, in an increase in both [ATP]mito and [ATP]cyto. We also observe the stimulation of ATP consumption accompanying fertilization by monitoring [Ca2+]cyto and [ATP]cyto during fertilization of starved eggs. Our observations reveal that lactate, in contrast to pyruvate, does not fuel mitochondrial ATP production in the zygote. Therefore lactate-derived pyruvate is somehow diverted from mitochondrial oxidation and may be channeled to other metabolic routes. Together with our earlier findings, this study confirms the essential role for exogenous pyruvate in the up-regulation of ATP production at the onset of development, and suggests that lactate, which does not fuel energetic metabolism may instead regulate the intracellular redox potential.  相似文献   

13.
14.
The effect of hypoxia and re-oxygenation on the mitochondrial complex F(O)F(1)-ATP synthase was investigated in the whiteleg shrimp Litopenaeus vannamei. A 660 kDa protein complex isolated from mitochondria of the shrimp muscle was identified as the ATP synthase complex. After 10h at hypoxia (1.5-2.0 mg oxygen/L), the concentration of L-lactate in plasma increased significantly, but the ATP amount and the concentration of ATPβ protein remained unaffected. Nevertheless, an increase of 70% in the ATPase activity was detected, suggesting that the enzyme may be regulated at a post-translational level. Thus, during hypoxia shrimp are able to maintain ATP amounts probably by using some other energy sources as phosphoarginine when an acute lack of energy occurs. During re-oxygenation, the ATPase activity decreased significantly and the ATP production continued via the electron transport chain and oxidative phosphorylation. The results obtained showed that shrimp faces hypoxia partially by hydrolyzing the ATP through the reaction catalyzed by the mitochondrial ATPase which increases its activity.  相似文献   

15.
Both reactive oxygen species (ROS) and ATP depletion may be significant in hypoxia-induced damage and death, either collectively or independently, with high energy requiring, metabolically active cells being the most susceptible to damage.We investigated the kinetics and effects of ROS production in cardiac myoblasts, H9C2 cells, under 2%, 10% and 21% O2 in the presence or absence of apocynin, rotenone and carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone.H9C2 cells showed significant loss of viability within 30 min of culture at 2% oxygen which was not due to apoptosis, but was associated with an increase in protein oxidation. However, after 4 h, apoptosis induction was observed at 2% oxygen and also to a lesser extent at 10% oxygen; this was dependent on the levels of mitochondrial superoxide anion radicals determined using dihydroethidine. Hypoxia-induced ROS production and cell death could be rescued by the mitochondrial complex I inhibitor, rotenone, despite further depletion of ATP.In conclusion, a change to superoxide anion radical steady state level was not detectable after 30 min but was evident after 4 h of mild or severe hypoxia. Superoxide anion radicals from the mitochondrion and not ATP depletion is the major cause of apoptotic cell death in cardiac myoblasts under chronic, severe hypoxia.  相似文献   

16.
《BBA》2020,1861(8):148209
Mitochondrial uncoupling proteins (UCPs) play an essential role in dissipating the proton gradient and controlling the mitochondrial inner membrane potential. When active, UCPs promote proton leak across the inner membrane, oxidative phosphorylation uncoupling, oxygen uptake increase and decrease the ATP synthesis. Invertebrates possess only isoforms UCP4 and UCP5, however, the role of these proteins is not clear in most species since it may depend on the physiological needs of each animal. This study presents the first functional characterization of crustacean uncoupling proteins from the white shrimp Litopenaeus vannamei LvUCP4 and LvUCP5. Free radicals production in various shrimp organs/tissues was first evaluated, and mitochondria were isolated from shrimp pleopods. The oxygen consumption rate, membrane potential and proton transport of the isolated non-phosphorylating mitochondria were used to determine LvUCPs activation/inhibition. Results indicate that UCPs activity is stimulated in the presence of 4-hydroxyl-2-nonenal (HNE) and myristic acid, and inhibited by the purine nucleotide GDP. A hypoxia/re-oxygenation assay was conducted to determine whether UCPs participate in shrimp mitochondria response to oxidative stress. Isolated mitochondria from shrimp at re-oxygenation produced large quantities of hydrogen peroxide and higher levels of both LvUCPs were immunodetected. Results suggest that, besides the active response of the shrimp antioxidant system, UCP-like activity is activated after hypoxia exposure and during re-oxygenation. LvUCPs may represent a mild uncoupling mechanism, which may be activated before the antioxidant system of cells, to early control reactive oxygen species production and oxidative damage in shrimp.  相似文献   

17.
The mechanism of tissue protection from ischemic damage by activation of the mitochondrial ATP-dependent K+ channel (mitoKATP) remains unexplored. In this work, we have measured, using various approaches, the ATP-dependent mitochondrial K+ transport in rats that differed in their resistance to hypoxia. The transport was found to be faster in the hypoxia-resistant rats as compared to that in the hypoxia-sensitive animals. Adaptation of animals to the intermittent normobaric hypoxia increased the rate of transport. At the same time, the intramitochondrial concentration of K+ in the hypoxia-sensitive rats was higher than that in the resistant and adapted animals. This indicates that adaptation to hypoxia stimulates not only the influx of potassium into mitochondria, but also K+/H+ exchange. When mitoKATP was blocked, the rate of the mitochondrial H2O2 production was found to be significantly higher in the hypoxia-resistant rats than that in the hypoxia-sensitive animals. The natural flavonoid-containing adaptogen Extralife, which has an evident antihypoxic effect, increased the rate of the mitochondrial ATP-dependent K+ transport in vitro and increased the in vivo tolerance of hypoxia-sensitive rats to acute hypoxia 5-fold. The involvement of the mitochondrial K+ transport in the mechanism of cell adaptation to hypoxia is discussed.  相似文献   

18.
《BBA》2022,1863(5):148544
Proton-translocating FOF1 ATP synthase (F-ATPase) couples ATP synthesis or hydrolysis to transmembrane proton transport in bacteria, chloroplasts, and mitochondria. The primary function of the mitochondrial FOF1 is ATP synthesis driven by protonmotive force (pmf) generated by the respiratory chain. However, when pmf is low or absent (e.g. during anoxia), FOF1 consumes ATP and functions as a proton-pumping ATPase.Several regulatory mechanisms suppress the ATPase activity of FOF1 at low pmf. In yeast mitochondria they include special inhibitory proteins Inh1p and Stf1p, and non-competitive inhibition of ATP hydrolysis by MgADP (ADP-inhibition). Presumably, these mechanisms help the cell to preserve the ATP pool upon membrane de-energization. However, no direct evidence was presented to support this hypothesis so far.Here we report that a point mutation Q263L in subunit beta of Saccharomyces cerevisiae ATP synthase significantly attenuated ADP-inhibition of the enzyme without major effect on the rate of ATP production by mitochondria. The mutation also decreased the sensitivity of the enzyme ATPase activity to azide. Similar effects of the corresponding mutations were observed in earlier studies in bacterial enzymes. This observation indicates that the molecular mechanism of ADP-inhibition is probably the same in mitochondrial and in bacterial FOF1.The mutant yeast strain had lower growth rate and had a longer lag period preceding exponential growth phase when starved cells were transferred to fresh growth medium. However, upon the loss of mitochondrial DNA (ρ0) the βQ263L mutation effect was reversed: the βQ263L ρ0 mutant grew faster than the wild-type ρ0 yeast. The results suggest that ADP-inhibition might play a role in prevention of wasteful ATP hydrolysis in the mitochondrial matrix.  相似文献   

19.
The sites and rates of mitochondrial production of superoxide and H2O2 in vivo are not yet defined. At least 10 different mitochondrial sites can generate these species. Each site has a different maximum capacity (e.g. the outer quinol site in complex III (site IIIQo) has a very high capacity in rat skeletal muscle mitochondria, whereas the flavin site in complex I (site IF) has a very low capacity). The maximum capacities can greatly exceed the actual rates observed in the absence of electron transport chain inhibitors, so maximum capacities are a poor guide to actual rates. Here, we use new approaches to measure the rates at which different mitochondrial sites produce superoxide/H2O2 using isolated muscle mitochondria incubated in media mimicking the cytoplasmic substrate and effector mix of skeletal muscle during rest and exercise. We find that four or five sites dominate during rest in this ex vivo system. Remarkably, the quinol site in complex I (site IQ) and the flavin site in complex II (site IIF) each account for about a quarter of the total measured rate of H2O2 production. Site IF, site IIIQo, and perhaps site EF in the β-oxidation pathway account for most of the remainder. Under conditions mimicking mild and intense aerobic exercise, total production is much less, and the low capacity site IF dominates. These results give novel insights into which mitochondrial sites may produce superoxide/H2O2 in vivo.  相似文献   

20.
Previous studies have shown that hypoxia induces nitric oxide synthase-mediated generation of nitric oxide free radicals leading to peroxynitrite production. The present study tests the hypothesis that hypoxia results in NO-mediated modification of Na+, K+-ATPase in the fetal brain. Studies were conducted in guinea pig fetuses of 58-days gestation. The mothers were exposed to FiO2 of 0.07% for 1 hour. Brain tissue hypoxia in the fetus was confirmed biochemically by decreased ATP and phosphocreatine levels. P2 membrane fractions were prepared from normoxic and hypoxic fetuses and divided into untreated and treated groups. The membranes were treated with 0.5 mM peroxynitrite at pH 7.6. The Na+, K+-ATPase activity was determined at 37°C for five minutes in a medium containing 100 mM NaCl, 20 mM KCl, 6.0 mM MgCl2, 50 mM Tris HCl buffer pH 7.4, 3.0 mM ATP with or without 10 mM ouabain. Ouabain sensitive activity was referred to as Na+, K+-ATPase activity. Following peroxynitrite exposure, the activity of Na+, K+-ATPase in guinea pig brain was reduced by 36% in normoxic membranes and further 29% in hypoxic membranes. Enzyme kinetics was determined at varying concentrations of ATP (0.5 mM-2.0 mM). The results indicate that peroxynitrite treatment alters the affinity of the active site of Na+, K+-ATPase for ATP and decreases the Vmax by 35% in hypoxic membranes. When compared to untreated normoxic membranes Vmax decreases by 35.6% in treated normoxic membranes and further to 52% in treated hypoxic membranes. The data show that peroxynitrite treatment induces modification of Na+, K+-ATPase. The results demonstrate that peroxynitrite decreased activity of Na+, K+-ATPase enzyme by altering the active sites as well as the microenvironment of the enzyme. We propose that nitric oxide synthase-mediated formation of peroxynitrite during hypoxia is a potential mechanism of hypoxia-induced decrease in Na+, K+-ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号