首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postobstructive pulmonary vasculopathy, produced by chronic ligation of one pulmonary artery, markedly increases bronchial blood flow. Previously, using arterial and venous occlusion, we determined that bronchial collaterals enter the pulmonary circuit at the distal end of the arterial segment. In this study, we tested the hypothesis that pressure in bronchial collaterals (Pbr) closely approximates that at the downstream end of the arterial segment (Pao). We pump perfused [111 +/- 10 (SE) ml/min] left lower lobes of seven open-chest live dogs 3-15 mo after ligation of the left main pulmonary artery. Bronchial blood flow was 122 +/- 16 ml/min. We measured pulmonary arterial and venous pressures and, by arterial and venous occlusion, respectively, Pao and the pressure at the upstream end of the venous segment (Pvo). Pbr was obtained by micropuncture of 34 pleural surface bronchial vessels 201 +/- 16 microns in diameter. We found that Pbr (14.4 +/- 1.0 mmHg) was similar to Pao (15.0 +/- 0.8 mmHg) but differed significantly (P < 0.01) from Pvo (11.3 +/- 0.5 mmHg). In addition, Pbr was independent of systemic arterial pressure and bronchial vessel diameter. Light and electron microscopy revealed that, in the lobes with the ligated pulmonary artery, the new bronchial collaterals entered the thickened pleura from the parenchyma via either bronchovascular bundles or interlobular septa and had sparsely muscularized walls. We conclude that, in postobstructive pulmonary vasculopathy, bronchial collateral pressure measured by micropuncture is very close to the pressure in precapillary pulmonary arteries and that most of the pressure drop in the bronchial collaterals occurs in vessels > 350 microns in diameter.  相似文献   

2.
Studies of the origin of pulmonary blood flow heterogeneity have highlighted the significant role of vessel branching structure on flow distribution. To enable more detailed investigation of structure-function relationships in the pulmonary circulation, an anatomically based finite element model of the arterial and venous networks has been developed to more accurately reflect the geometry found in vivo. Geometric models of the arterial and venous tree structures are created using a combination of multidetector row X-ray computed tomography imaging to define around 2,500 vessels from each tree, a volume-filling branching algorithm to generate the remaining accompanying conducting vessels, and an empirically based algorithm to generate the supernumerary vessel geometry. The explicit generation of supernumerary vessels is a unique feature of the computational model. Analysis of branching properties and geometric parameters demonstrates close correlation between the model geometry and anatomical measures of human pulmonary blood vessels. A total of 12 Strahler orders for the arterial system and 10 Strahler orders for the venous system are generated, down to the equivalent level of the terminal bronchioles in the bronchial tree. A simple Poiseuille flow solution, assuming rigid vessels, is obtained within the arterial geometry of the left lung, demonstrating a large amount of heterogeneity in the flow distribution, especially with inclusion of supernumerary vessels. This model has been constructed to accurately represent available morphometric data derived from the complex asymmetric branching structure of the human pulmonary vasculature in a form that will be suitable for application in functional simulations.  相似文献   

3.
The bronchial flow is approximately 1% of the total pulmonary flow. Anastomosis between the bronchial and pulmonary vessels occurs primarily at the microcirculatory level. It is assumed that bronchopulmonary anastomoses are present in a homogeneous manner throughout lung parenchyma. To investigate this issue, an in situ blood-perfused left lower lung lobe (500 ml/min) was prepared in a live dog. The bronchial flow rate in the entire lobe was monitored using the rate of volume gain in the reservoir while the pulmonary and bronchial flow in the subpleural region was monitored using laser-Doppler flowmetry. The results were expressed as ratio of bronchial to pulmonary flow rate for the entire lobe and for the subpleural region. We found that, for the entire lobe, bronchial flow was 1.0% of pulmonary flow, while for the subpleural region this ratio was much higher, with an average of 12%. In two different experimental conditions that were imposed to affect the global bronchial flow, these ratios changed in the same direction as the global bronchial flow. After transfusion of blood into the animal, bronchial flow increased to 1.7%, while the subpleural bronchial flow increased to 18% of the subpleural pulmonary flow. During elevation of venous pressure, bronchial flow decreased to 0.6%, while the subpleural bronchial flow decreased to 10% of the subpleural pulmonary flow. The differences in the ratios between the global and subpleural region may be explained by having low pulmonary blood flow in the periphery compared with the interior regions of the lung.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Infarction of the lung is uncommon even when both the pulmonary and the bronchial blood supplies are interrupted. We studied the possibility that a tidal reverse pulmonary venous flow is driven by the alternating distension and compression of alveolar and extra-alveolar vessels with the lung volume changes of breathing and also that a pulsatile reverse flow is caused by left atrial pressure transients. We infused SF6, a relatively insoluble inert gas, into the left atrium of anesthetized goats in which we had interrupted the left pulmonary artery and the bronchial circulation. SF6 was measured in the left lung exhalate as a reflection of the reverse pulmonary venous flow. No SF6 was exhaled when the pulmonary veins were occluded. SF6 was exhaled in increasing amounts as left atrial pressure, tidal volume, and ventilatory rates rose during mechanical ventilation. SF6 was not excreted when we increased left atrial pressure transients by causing mitral insufficiency in the absence of lung volume changes (continuous flow ventilation). Markers injected into the left atrial blood reached the alveolar capillaries. We conclude that reverse pulmonary venous flow is driven by tidal ventilation but not by left atrial pressure transients. It reaches the alveoli and could nourish the alveolar tissues when there is no inflow of arterial blood.  相似文献   

5.
Systemic to pulmonary flow from bronchial circulation, important in perfusing potentially ischemic regions distal to pulmonary vascular obstructions, depends on driving pressure between an upstream site in intrathoracic systemic arterial network and pulmonary vascular bed. The reported increase of pulmonary infarctions in heart failure may be due to a reduction of this driving pressure. We measured upstream element for driving pressure for systemic to pulmonary flow from bronchial circulation by raising pulmonary venous pressure (Ppv) until the systemic to pulmonary flow from bronchial circulation ceased. We assumed that this was the same as upstream pressure when there was flow. Systemic to pulmonary flow from bronchial circulation was measured in left lower lobes (LLL) of 21 anesthetized open-chest dogs from volume of blood that overflowed from pump-perfused (90-110 ml/min) pulmonary vascular circuit of LLL and was corrected by any changes of LLL fluid volume (wt). Systemic to pulmonary flow from bronchial circulation upstream pressure was linearly related to systemic arterial pressure (slope = 0.24, R = 0.845). Increasing Ppv caused a progressive reduction of systemic to pulmonary flow from bronchial circulation, which stopped when Ppv was 44 +/- 6 cmH2O and pulmonary arterial pressure was 46 +/- 7 cmH2O. A further increase in Ppv reversed systemic to pulmonary flow from bronchial circulation with blood flowing back into the dog. When net systemic to pulmonary flow from bronchial circulation by the overflow and weight change technique was zero a small bidirectional flow (3.7 +/- 2.9 ml.min-1 X 100 g dry lobe wt-1) was detected by dispersion of tagged red blood cells that had been injected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In order to study the role of the bronchial vascular system in pulmonary protein transport, experiments have been performed in 6 anesthesized dogs, 16 isolated canine lungs and 10 white rats. When bilateral ligation of the bronchial arteries is performed in the anesthesized dogs, cessation of the bronchial blood stream results in decreasing protein transport and lymph outflow from the lungs. In the isolated canine lungs perfused through the pulmonary and bronchial vessels, lymph formation is determined by presence of the bronchial perfusion. As demonstrated the electron microscopical investigations with the marker of the protein transport--horseradish peroxidase--for 15 min of observation the marker does not get out of the limits of endothelium in the pulmonary capillaries. During this time horseradish peroxidase gets out of the bronchial vessels into the loose connective tissue of the lung, the lymphatic capillaries and the alveolar epithelium. Therefore, it is possible to make a conclusion on a predominated role of the protein transport in the lungs out of the bronchial vascular system as compared to the pulmonary system.  相似文献   

7.
Postobstructive pulmonary vasculopathy (POPV) was produced by chronic ligation (120 days) of the left main pulmonary artery of seven dogs. To explain the abnormal physiological changes found using arterial and venous occlusion (AVO) in POPV (J. Appl. Physiol. 69: 1022-1032, 1990), the light-microscopic morphology, morphometry (n = 5), and ultrastructure (n = 6) of ligated left lower lobes were compared with contralateral control right lower lobes. First, there was a proliferation of bronchial vessels around pulmonary vessels and airways to explain bronchial blood flow rates of 330 ml/min in left lower lobes. The walls of the bronchial vessels contained smooth muscle with minimal elastic tissue and prominent myoendothelial junctions. Second, focal bronchopulmonary anastomoses were seen in pulmonary arteries approximately equal to 100 microns diam, which is consistent with our conclusion that the major site of communication is at the precapillary level and suggests that the limit between arterial and middle segments defined by AVO may lie in arteries of approximately equal to 100 microns. Third, to explain the increased arterial resistance in POPV, the pulmonary arteries had an increased percent medial muscle thickness, peripheral muscularization, and focal intimal thickening but had no plexiform lesions. The ultrastructure of the arteries revealed new intimal cells and numerous myoendothelial junctions rarely found in controls. Capillaries and veins were only subtly altered. Fourth, the hyperreactivity of arteries to serotonin and of veins to histamine found using AVO was partially explained by the increased medial thickness and decreased diameter but may also be due to increased receptor concentration or related to the myoendothelial junctions. We conclude that most of the hemodynamic alterations in POPV are related to morphological abnormalities and that this model has clinical and experimental relevance in the study of bronchopulmonary vascular interactions.  相似文献   

8.
The functional properties of microcirculation and rheology of blood were studied in dogs subjected to arterial and venous occlusion of mesenteric vessels (cranial mesenteric artery and cranial mesenteric vein). It was found that a local alterations of microvascular bed of intestinal wall are quite different in case of arterial or venous occlusion. The degree of hemorheological and microvascular deviations is higher in case of acute venous thrombosis than during the acute occlusion of cranial mesenteric artery.  相似文献   

9.
We continuously weighed fully distended excised or in situ canine lobes to estimate the fluid filtration coefficient (Kf) of the arterial and venous extra-alveolar vessels compared with that of the entire pulmonary circulation. Alveolar pressure was held constant at 25 cmH2O after full inflation. In the in situ lobes, the bronchial circulation was interrupted by embolization. Kf was estimated by two methods (Drake and Goldberg). Extra-alveolar vessels were isolated from alveolar vessels by embolizing enough 37- to 74-micron polystyrene beads into the lobar artery or vein to completely stop flow. In excised lobes, Kf's of the entire pulmonary circulation by the Drake and Goldberg methods were 0.122 +/- 0.041 (mean +/- SD) and 0.210 +/- 0.080 ml X min-1 X mmHg-1 X 100 g lung-1, respectively. Embolization was not found to increase the Kf's. The mean Kf's of the arterial extra-alveolar vessels were 0.068 +/- 0.014 (Drake) and 0.069 +/- 0.014 (Goldberg) (24 and 33% of the Kf's for the total pulmonary circulation). The mean Kf's of the venous extra-alveolar vessels were similar [0.046 +/- 0.020 (Drake) and 0.065 +/- 0.036 (Goldberg) or 33 and 35% of the Kf's for the total circulation]. No significant difference was found between the extra-alveolar vessel Kf's of in situ vs. excised lobes. These results suggest that when alveolar pressure, lung volume, and pulmonary vascular pressures are high, approximately one-third of the total fluid filtration comes from each of the three compartments.  相似文献   

10.
R S Purwar 《Acta anatomica》1976,96(2):149-161
An investigation was undertaken to demonstrate the neural elements of the lung of Francolinus pondicerianus, from the point of view of neurohistology and histochemistry. The staining of the neural elements was done by the cholinesterase technique with a maintained pH of 5.2, temperature 40 degrees C and incubation period of 19 h. Distribution of nerves in association with bronchial cartilage, pulmonary vessels and bronchi has been described and discussed. The distribution of the ganglia in association with blood vessels, bronchi, cartilage, various plexuses and the neural terminal terminal network has also been described. The innervation of the bronchi and their branches, and formation of the neural terminal network has been studied, as well as the distribution of cholinesterase in bronchi, blood vessels, muscles, ganglia, and nerve fibres.  相似文献   

11.
Occlusion pressures vs. micropipette pressures in the pulmonary circulation   总被引:2,自引:0,他引:2  
Because of the discrepancies between the arterial and venous occlusion technique and the micropuncture technique in estimating pulmonary capillary pressure gradient, we compared measurements made with the two techniques in the same preparations (isolated left lower lobe of dog lung). In addition, we also obtained direct and reliable measurements of pressures in 0.9-mm arteries and veins using a retrograde catheterization technique, as well as a microvascular pressure made with the double-occlusion technique. The following conclusions were made from dog lobes perfused with autologous blood at normal flow rate of 500-600 ml/min and pressure gradient of 12 mmHg. 1) The double-occlusion technique measures pressure in the capillaries, 2) a small pressure gradient (0.5 mmHg) exists between 30- to 50-micron arteries and veins, 3) a large pressure gradient occurs in arteries and veins greater than 0.9 mm, 4) the arterial and venous occlusion techniques measure pressures in vessels that are less than 900 microns diam but greater than 50 microns, very likely close to 100 microns, 5) serotonin constricts arteries (larger and smaller than 0.9 mm) whereas histamine constricts veins (larger and smaller than 0.9 mm). Thus three different techniques (small retrograde catheter, arterial and venous occlusion, and micropuncture) show consistent results, confirming the presence of significant resistance in large arteries and veins with minimal resistance in the microcirculation.  相似文献   

12.
The investigation performed has demonstrated that under a great deal of coronary, pulmonary and other organs' disorders, in the venous and lymphatic beds of the heart compensatory-adaptive and pathological changes occur. The earliest and deepest changes are noted in the microcirculatory bed. Most of morphological signs on vascular reconstruction are not specific and are observed at different kinds of clinical and experimental pathology. Changes in venous and lymphatic vessels of pathological conditions& do not only result from damage in the organ's wall or hemodynamical changes in the cavities of the cardiac vessels but they themselves can cause some disturbances in the miocardial microcirculation intensifying its hypoxia, congestive symptoms and enhancing the development of decompensation in the organ.  相似文献   

13.
Sensory neuropeptides may be important in the noncholinergic component of parasympathetic vasodilation in the tracheobronchial circulation. We studied the effects of substance P (SP), neurokinin A (NKA), neurokinin B (NKB) and calcitonin gene-related peptide (CGRP) on the isolated canine bronchial artery and used pulmonary artery and vein of similar size for comparison. CGRP (10pM-300nM) was a potent relaxant of the bronchial and pulmonary arteries, and the pulmonary vein with equal potency in all vessels. SP in low concentrations (10pM-100nM) caused vasodilation of the precontracted bronchial artery and in high concentration (10-100 microM) contracted the vessel from resting tone. SP also relaxed the pulmonary artery and vein. NKA and NKB caused relaxation in all three vessels. All of the vascular effects of the sensory neuropeptides were concentration-dependent. The order of potency of the neuropeptides in the bronchial and pulmonary artery was SP greater than NKA greater than CGRP greater than NKB. In the pulmonary vein NKB caused a much larger relaxation than SP and NKA but it was less potent than either NKA or CGRP. Capsaicin (1 microM) caused a large contraction of the bronchial artery, similar in magnitude to the contraction caused by high dose of SP. Neuropeptide Y was also studied and found to cause no consistent constriction of any of the vessels studied. In conclusion, CGRP is a universal dilator of the bronchial and pulmonary blood vessels. SP and NKA exert their main effect on arterial vasomotor tone, whereas NKB is the only tachykinin producing marked dilation of the pulmonary vein.  相似文献   

14.
The effect of local isometric exercise on hand and forearm blood flow was studied. With maximum muscular exercise performed by both males and females, a decrease in hand and forearm blood flow was due to vasoconstriction caused by the mechanical pressure of working muscles. With 75 and 50% loads, marked hyperemia was observed in the main and microcirculatory vessels in the hand and forearm, which was rather long-lasting in the hand because of the difficulty of the forearm venous outflow. The minimum loads affected mainly the microcirculation, and no significant hemodynamic changes in main vessels were observed. The exercise performed at 50% of maximum muscular force was taken as an optimum load in kinesotherapeutic programs.  相似文献   

15.
The adult lung is perfused by both the systemic bronchial artery and the entire venous return flowing through the pulmonary arteries. In most lung pathologies, it is the smaller systemic vasculature that responds to a need for enhanced lung perfusion and shows robust neovascularization. Pulmonary vascular ischemia induced by pulmonary artery obstruction has been shown to result in rapid systemic arterial angiogenesis in man as well as in several animal models. Although the histologic assessment of the time course of bronchial artery proliferation in rats was carefully described by Weibel 1, mechanisms responsible for this organized growth of new vessels are not clear. We provide surgical details of inducing left pulmonary artery ischemia in the rat that leads to bronchial neovascularization. Quantification of the extent of angiogenesis presents an additional challenge due to the presence of the two vascular beds within the lung. Methods to determine functional angiogenesis based on labeled microsphere injections are provided.  相似文献   

16.
In regional lung injury, pulmonary blood flow decreases to the injured regions, and anastomotic bronchial blood flow and total bronchial blood flow increase. However, the pattern of redistribution of the two blood flows to the injured and noninjured areas is not known. In six anesthetized sheep, pulmonary and bronchial blood flows were measured with 15-microm fluorescent microspheres by using the reference flow method. Blood flows were measured in the control state and 1 h after instilling 1 ml/kg of 0. 1 N hydrochloric acid into a dependent segment of the left lung. The lungs were then removed, dried, and cubed into approximately 2-cm cubes while spatial coordinates were noted. Blood flow to each piece was calculated. Mean pulmonary blood flow to the noninjured pieces went from 730 +/- 246 to 574 +/- 347 ml/min (P = 0.22), whereas in the injured pieces the pulmonary blood flow decreased from 246 +/- 143 to 56 +/- 46 ml/min (P < 0.01). In contrast, bronchial blood flow to the injured pieces increased from 0.51 +/- 0.1 to 1.43 +/- 0. 85 ml/min (P = 0.005). We measured the change in flow as it related to the distance from the center of the injured area. Pulmonary blood flow decreased most at the center of the injury, whereas bronchial blood flow doubled at the center of injury and decreased with the distance away from the injury. The absolute increase in bronchial blood flow was substantially less than the decrease in pulmonary blood flow in the injured pieces. We also partitioned the observed variation in pulmonary and bronchial blood flow into that attributable to structure and that due to lung injury and found that 48% of the variation in pulmonary blood flow could be attributed to structure, whereas in the bronchial circulation 70% was attributable to structure. The reasons for these differences are not known and may reflect the intrinsic properties of the systemic and pulmonary circulations.  相似文献   

17.
By means of ultrasonic method used in acute experiments on cats with closed chest under normal respiration the authors studied the blood flow in left low-lobar pulmonary artery and vein and in bronchial artery, as well as the blood pressure in pulmonary and femoral arteries in inhalation of next gaseous mixtures: 7.5% O2 in nitrogen; 30% O2; 3% CO2; 21% O2+ +79% He; 30% O2 + 67% He + 3% CO2. It was shown, that inhalation of the normoxic gaseous mixture, in which nitrogen is replaced by helium, did not call significant changes in pulmonary and systemic circulation. However, the presence of the helium in complicated gaseous mixture can change the reactivity of pulmonary and bronchial vessels to influence the components participating in these complicated gaseous mixtures.  相似文献   

18.
Acute and chronic experiments on dogs have demonstrated the onset of local alveolar hypoxia in disturbed bronchial patency. Alveolar hypoxia caused a rise in the pulmonary vascular resistance. Pulmonary hypertension is predetermined by an increased number of pulmonary zones of hypoxic vasoconstriction due to higher incidence and degree of bronchial obstruction. Despite pulmonary circulation redistribution confirmed by radioactive indicator 99mTc distribution, the perfusion of hypoventilated pulmonary regions is retained leading to venous shunt generation and the reduction of oxygen tension in the arterial animal blood.  相似文献   

19.

Background

Lymphatic vessels play a pivotal role in fluid drainage and egress of immune cells from the lung. However, examining murine lung lymphatics is hampered by the expression of classical lymph endothelial markers on other cell types, which hinders the unambiguous identification of lymphatics. The expression of CD90/Thy-1 on lymph endothelium was recently described and we therefore examined its suitability to identify murine pulmonary lymph vessels under healthy and inflammatory conditions.

Methodology/Principal Findings

Immunohistochemistry with a monoclonal antibody against CD90.2/Thy-1.2 on 200 µm thick precision cut lung slices labeled a vascular network that was distinct from blood vessels. Preembedding immunostaining and electron microscopy verified that the anti-CD90.2/Thy-1.2 antibody labeled lymphatic endothelium. Absence of staining in CD90.1/Thy-1.1 expressing FVB mice indicated that CD90/Thy-1 was expressed on lymph endothelium and labeling was not due to antibody cross reactivity. Double-labeling immunohistochemistry for CD90/Thy-1 and α-smooth muscle actin identified two routes for lymph vessel exit from the murine lung. One started in the parenchyma or around veins and left via venous blood vessels. The other began in the space around airways or in the space between airways and pulmonary arteries and left via the main bronchi. As expected from the pulmonary distribution of lymph vessels, intranasal application of house dust mite led to accumulation of T cells around veins and in the connective tissue between airways and pulmonary arteries. Surprisingly, increased numbers of T cells were also detected around intraacinar arteries that lack lymph vessels. This arterial T cell sheath extended to the pulmonary arteries where lymph vessels were located.

Conclusions/Significance

These results indicate that CD90/Thy-1 is expressed on lymphatic endothelial cells and represents a suitable marker for murine lung lymph vessels. Combining CD90/Thy-1 labeling with precision cut lung slices allows visualizing the anatomy of the lymphatic system in normal and inflamed conditions.  相似文献   

20.
Distribution of bronchial blood flow was measured in unanesthetized sheep by the use of two modifications of the microsphere reference sample technique that correct for peripheral shunting of microspheres: 1) A double microsphere method in which simultaneous left and right atrial injections of 15-microns microspheres tagged with different isotopes allowed measurement of both pulmonary blood flow and shunt-corrected bronchial blood flow, and 2) a pulmonary arterial occlusion method in which left atrial injection and transient occlusion of the left pulmonary artery prevented delivery to the lung of microspheres shunted through the peripheral circulation and allowed systemic blood flow to the left lung to be measured. Both methods can be performed in unanesthetized sheep. The pulmonary arterial occlusion method is less costly and requires fewer calculations. The double microsphere method requires less surgical preparation and allows measurement without perturbation of pulmonary hemodynamics. There was no statistically significant difference between bronchial blood flow measured with the two methods. However, total bronchial blood flow measured during pulmonary arterial occlusion (1.52 +/- 0.98% of cardiac output, n = 9) was slightly higher than that measured with the double microsphere method (1.39 +/- 0.88% of cardiac output, n = 9). In another series of experiments in which sequential measurements of bronchial blood flow were made, there was a significant increase of 15% in left lung bronchial blood flow during the first minute of occlusion of the left pulmonary artery. Thus pulmonary arterial occlusion should be performed 5 s after microsphere injection as originally described by Baile et al. (1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号