首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The pentose phosphate pathway in Krebs ascites cells was investigated for regulatory reactions. For comparison, the glycolytic pathway was studied simultaneously. 2. Activities of the pentose phosphate pathway enzymes were low in contrast with those of the enzymes of glycolysis. The K(m) values of glucose 6-phosphate dehydrogenase for both substrate and cofactor were about four times the reported upper limit for the enzyme from normal tissues. Fructose 1,6-diphosphate and NADPH competitively inhibited 6-phosphogluconate dehydrogenase. 3. About 28% of the hexokinase activity was in the particulate fraction of the cells. The soluble enzyme was inhibited by fructose 1,6-diphosphate and ribose 5-phosphate, but not by 3-phosphoglycerate. The behaviour of the partially purified soluble enzyme in vitro in a system simulating the concentrations of ATP, glucose 6-phosphate and P(i) found in vivo is reported. 4. Kinetics of metabolite accumulation during the transient state after the addition of glucose to the cells indicated two phases of glucose phosphorylation, an initial rapid phase followed abruptly by a slow phase extending into the steady state. 5. Of the pentose phosphate pathway intermediates, accumulation of 6-phosphogluconate, sedoheptulose 7-phosphate and fructose 6-phosphate paralleled the accumulation of glucose 6-phosphate. Erythrose 4-phosphate reached the steady-state concentration by 2min., whereas the pentose phosphates accumulated linearly. 6. The mass-action ratios of the pentose phosphate pathway reactions were calculated. The transketolase reaction was at equilibrium by 30sec. and then progressively shifted away from equilibrium towards the steady-state ratio. The glucose 6-phosphate dehydrogenase was far from equilibrium at all times. 7. Investigation of the flux of [(14)C]glucose carbon confirmed the existence of an operative pentose phosphate pathway in ascites cells, contributing 1% of the total flux in control cells and 10% in cells treated with phenazine methosulphate. 8. The pentose phosphate formed by way of the direct oxidative route and estimated from the (14)CO(2) yields represented 20% of the total accumulated pentose phosphate, the other 80% being formed by the non-oxidative reactions of the pentose phosphate pathway. 9. The pentose phosphate pathway appears to function as two separate pathways, both operating towards pentose phosphate formation. Control of the two pathways is discussed.  相似文献   

2.
D-Glucose-6-phosphate dehydrogenase is a regulatory enzyme of the oxidative pentose phosphate pathway in Schizasaccharomyces pombe. The enzyme is subject to negative cooperative regulation by D-glucose-6-phosphate as characterized by the Hill coefficient of 0.68 +/- 0.04. D-Glyceraldehyde-3-phosphate and D-ribulose-5-phosphate rectify the negative cooperativity as evidenced from a change in the Hill coefficients to 0.98 +/- 0.05 and 1.02 +/- 0.05, respectively. These pentose phosphate pathway intermediates also inhibit the enzyme competitively with respect to D-glucose-6-phosphate. Thus, D-glucose-6-phosphate dehydrogenase provides an avenue for regulating the partitioning of D-glucose between the redundant branches of the oxidative phosphate pathway in S. pombe.  相似文献   

3.
W. Jessup  M. W. Fowler 《Planta》1977,137(1):71-76
In sycamore cells grown on nitrate as opposed to glutamate there is a higher pentose phosphate pathway carbon flux relative to glycolysis in the early stages of cell growth when nitrate assimilation is most active. The high pentose phosphate pathway activity compared with glycolysis in nitrate grown cells is accompanied by enhanced levels of hexokinase, pyruvate kinase, glucose-6-phosphate de-hydrogenase, 6-phosphogluconate dehydrogenase and transketolase. There is no significant increase in activity of the solely glycolytic enzyme, phosphofructokinase. It is suggested that the increased pentose phosphate pathway activity in nitrate grown cells is correlated with a demand by nitrite assimilation for NADPH.II=Jessup and Fowler, 1976 b  相似文献   

4.
The changes in the activity of the pentose phosphate cycle and the malic enzyme produced by the activation or inhibition of different NADPH-consuming pathways have been studied. The inhibition of the fatty acid synthesis by kynurenate produced a decrease in the flux through the pentose phosphate cycle and a diminution in the malic enzyme pathway. The incubation of the adipocytes in the presence of ter-butyl-hydroperoxide, a compound which is metabolized via a NADPH-consuming pathway, produced a big increase in the pentose phosphate cycle and the malic enzyme activities. The regulation of these NADPH-producing pathways by the NADPH/NADP ratio is discussed.  相似文献   

5.
We have studied the changes in the activity of the pentose phosphate cycle and the malic enzyme produced by the activation or inhibition of different NADPH-consuming pathways. Kynurenate, an acetyl-CoA-carboxylase inhibitor produced a decrease in the flux through the NADPH-producing pathways pentose phosphate cycle and malic enzyme. Acini (isolated from mammary gland) incubated in the presence of ter-butyl-hydroperoxide, a compound which is metabolized via a NADPH-consuming pathway, showed a substantial increase in the pentose phosphate cycle and the malic enzyme pathways.  相似文献   

6.
Huppe HC  Farr TJ  Turpin DH 《Plant physiology》1994,105(4):1043-1048
The onset of photosynthetic NO3- assimilation in N-limited Chlamydomonas reinhardtii increased the initial extractable activity of the glucose-6-phosphate dehydrogenase (G6PDH), the key regulatory step of the oxidative pentose phosphate pathway. The total activated enzyme activity did not change upon NO3- resupply. The higher activity, therefore, represents activation of existing enzyme. No activation occurred during NH4+ assimilation. Incubation of extracts with DTT reversed the NO3- stimulation of G6PDH activity, indicating that the activation involved redox modulation of G6PDH. Phosphoribulosekinase, an enzyme activated by thioredoxin reduction, was inhibited at the onset of NO3- assimilation. A 2-fold stimulation of O2 evolution and a 70% decrease in the rate of photosynthetic CO2 assimilation accompanied the enzyme activity changes. There was an immediate drop in the NADPH and an increase in NADP upon addition of NO3-, whereas NH4+ caused only minor fluctuations in these pools. The response of C. reinhardtii to NO3- indicates that the oxidative pentose phosphate pathway was activated to oxidize carbon upon the onset of NO3- assimilation, whereas reduction of carbon via the reductive pentose phosphate pathway was inhibited. This demonstrates a possible role for the Fd-thioredoxin system in coordinating enzyme activity in response to the metabolic demands for reducing power and carbon during NO3- assimilation.  相似文献   

7.
Glucose-6-phosphate isomerase catalyzes the reversible aldose-ketose isomerization of D-glucose-6-phosphate to D-fructose-6-phosphate in glycolysis and gluconeogenesis, and in the recycling of hexose-6-phosphate in the pentose phosphate pathway. The unicellular protozoans, Trypanosoma brucei, T. cruzi and Leishmania spp., of the order Kinetoplastida are important human parasites responsible for African sleeping sickness, Chagas' disease and leishmaniases, respectively. In these parasites, glycolysis is an important (and in some cases the only) metabolic pathway for ATP supply. The first seven of the 10 enzymes that participate in glycolysis, as well as an important fraction of the enzymes of the pentose phosphate pathway, are compartmentalized in peroxisome-like organelles called glycosomes. The dependence of the parasites on glycolysis, the importance of the pentose phosphate pathway in defense against oxidative stress, and the unique compartmentalization of these pathways, point to the enzymes contained in the glycosome as potential targets for drug design. The present report describes the first crystallographic structure of a parasite (Leishmania mexicana) glucose-6-phosphate isomerase. A comparison of the atomic structure of L. mexicana, human and other mammalian PGIs, which highlights unique features of the parasite's enzyme, is presented.  相似文献   

8.
1. Measurements were made of the activities of the enzymes of the pentose phosphate pathway concerned in both the oxidative (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) and the non-oxidative (ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase, transketolase and transaldolase) reactions of this pathway, together with hexokinase and phosphoglucose isomerase, in adipose tissue in a variety of nutritional and hormonal conditions. 2. Starvation for 2 days caused a significant decrease in the activities of all the enzymes of the pentose phosphate pathway, with the exception of glucose 6-phosphate dehydrogenase, when expressed as activity/2 fat-pads; only the activities of ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase were significantly decreased on the basis of activity/mg. of protein. Re-feeding with a high-carbohydrate or high-fat diet for 3 days restored the activity of all the enzymes of the pentose phosphate pathway to the range of the control values, with the exception of transketolase, which showed a marked ;overshoot' in rats re-fed with carbohydrate. Starvation for 3 days caused a marked decrease in the activities of glucose 6-phosphate dehydrogenase and transketolase. 3. On the basis of activity/two fat-pads, alloxan-diabetes caused a marked decrease, to about half the control value, in the activities of all the enzymes concerned in the pentose phosphate pathway, transketolase showing the smallest decrease; hexokinase and phosphoglucose isomerase activities were also decreased. Treatment with insulin for 3 and 7 days raised the activities to normal or supranormal values, transketolase showing the most marked ;overshoot' effect. On the basis of activity/mg. of protein the activity of none of the enzymes was significantly decreased in alloxan-diabetes; transketolase and transaldolase activities were raised above the control values. With insulin treatment for 3 or 7 days the activities of all the enzymes were significantly increased, except that of ribulose 5-phosphate epimerase at the shorter time-interval. Glucagon treatment did not alter any of the enzyme activities expressed on either basis. 4. Thyroidectomy caused a decrease of 30-40% in the activities of enzymes of the pentose phosphate pathway, except for transketolase activity, which fell to 50% of the control value. Little change occurred in adipose-tissue weight or protein content. 5. Adrenalectomy caused a decrease of 40% in the activity of glucose 6-phosphate dehydrogenase and of 20-30% in the activities of the remaining enzymes of the pentose phosphate pathway; hexokinase activity was also decreased. Treatment with cortisone for 3 days did not significantly raise the activity from that found in adrenalectomized rats. Treatment of normal rats with high doses of cortisone had no significant effect on the activities of the enzymes of the pentose phosphate pathway in adipose tissue. 6. The changes in enzyme activities are discussed in relation to: (a) the concept of constant-proportion groups of enzymes; (b) the known changes in the flux of glucose through alternative metabolic pathways; (c) the pattern of change found in liver with similar hormonal and dietary conditions.  相似文献   

9.
Corynebacterium glutamicum is an important organism for the industrial production of amino acids such as lysine. In the present study time-dependent changes in the oxidative pentose phosphate pathway activity, an important site of NADPH regeneration in C. glutamicum, are investigated, whereby intracellular metabolite concentrations and specific enzyme activities in two isogenic leucine auxotrophic strains differing only in the regulation of their aspartate kinases were compared. After leucine limitation only the strain with a feedback-resistant aspartate kinase began to excrete lysine into the culture medium. Concomitantly, the intracellular NADPH to NADP concentration ratio increased from 2 to 4 in the non-producing strain, whereas it remained constant at about 1.2 in the lysine-producing strain. From these data the in'vivo flux through the pentose phosphate pathway was calculated. These results were used to approximate the total NADPH regeneration by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase, which agreed fairly well with the calculated demands for biomass formation and lysine biosynthesis. The analysis allowed to conclude that NADPH regeneration in the pentose phosphate pathway is essential for lysine biosynthesis in C. glutamicum.  相似文献   

10.
Toward more efficient L-lysine production, we have been challenging genome-based strain breeding by the approach of assembling only relevant mutations in a single wild-type background. Following the creation of a new L-lysine producer Corynebacterium glutamicum AHP-3 that carried three useful mutations (lysC311, hom59, and pyc458) on the relevant downstream pathways, we shifted our target to the pentose phosphate pathway. Comparative genomic analysis for the pathway between a classically derived L-lysine producer and its parental wild-type identified several mutations. Among these mutations, a Ser-361-->Phe mutation in the 6-phosphogluconate dehydrogenase gene (gnd) was defined as a useful mutation for L-lysine production. Introduction of the gnd mutation into strain AHP-3 by allelic replacement led to approximately 15% increased L-lysine production. Enzymatic analysis revealed that the mutant enzyme was less sensitive than the wild-type enzyme to allosteric inhibition by intracellular metabolites, such as fructose 1,6-bisphosphate, D-glyceraldehyde 3-phosphate, phosphoribosyl pyrophosphate, ATP, and NADPH, which were known to inhibit this enzyme. Isotope-based metabolic flux analysis demonstrated that the gnd mutation resulted in 8% increased carbon flux through the pentose phosphate pathway during L-lysine production. These results indicate that the gnd mutation is responsible for diminished allosteric regulation and contributes to redirection of more carbon to the pentose phosphate pathway that was identified as the primary source for NADPH essential for L-lysine biosynthesis, thereby leading to improved product formation.  相似文献   

11.
Glucose-6-phosphate dehydrogenase, together with the other enzymesof pentose phosphate pathway, was found in the cytosol as wellas in the plastid from developing castor bean (Ricinus communisL.) seeds. The plastid enzyme was found in both the matrix andthe membrane. The plastid enzyme has a sharp pH profile withthe optimum at 8.5, while the cytosolic enzyme has a broad pHprofile, optimum at 7.5. The plastid enzyme was inactivatedby storage at 0°C and by detergents such as Triton X-100,Brij and Nonidet, but the cytosolic enzyme was not. Slab geldisc electrophoresis indicated that three isoenzymes of glucose-6-phosphatedehydrogenase were found in the plastid but one enzyme in thecytosol of developing castor bean seed. From the presence ofglucose-6-phosphate dehydrogenase in the plastid, the operationof whole pentose phosphate pathway in this organelle of developingcastor bean seeds is suggested. (Received September 21, 1982; Accepted January 17, 1983)  相似文献   

12.
The specific activities of each of the enzymes of the classical pentose phosphate pathway have been determined in both cultured procyclic and bloodstream forms of Trypanosoma brucei. Both forms contained glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconolactonase (EC 3.1.1.31), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ribose-5-phosphate isomerase (EC 5.3.1.6) and transaldolase (EC 2.2.1.2). However, ribulose-5-phosphate 3'-epimerase (EC 5.1.3.1) and transketolase (EC 2.2.1.1) activities were detectable only in procyclic forms. These results clearly demonstrate that both forms of T. brucei can metabolize glucose via the oxidative segment of the classical pentose phosphate pathway in order to produce D-ribose-5-phosphate for the synthesis of nucleic acids and reduced NADP for other synthetic reactions. However, only procyclic forms are capable of using the non-oxidative segment of the classical pentose phosphate pathway to cycle carbon between pentose and hexose phosphates in order to produce D-glyceraldehyde 3-phosphate as a net product of the pathway. Both forms lack the key gluconeogenic enzyme, fructose-bisphosphatase (EC 3.1.3.11). Consequently, neither form should be able to engage in gluconeogenesis nor should procyclic forms be able to return any of the glyceraldehyde 3-phosphate produced in the pentose phosphate pathway to glucose 6-phosphate. This last specific metabolic arrangement and the restriction of all but the terminal steps of glycolysis to the glycosome may be the observations required to explain the presence of distinct cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. These same observations also may provide the basis for explaining the presence of cytosolic hexokinase and phosphoglucose isomerase without the presence of any cytosolic phosphofructokinase activity. The key enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydratase (EC 4.2.1.12) and 2-keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) were not detected in either procyclic or bloodstream forms of T. brucei.  相似文献   

13.
Evidence for a pentose phosphate pathway in Helicobacter pylori   总被引:1,自引:0,他引:1  
Abstract Evidence for the presence of enzymes of the pentose phosphate pathway in Helicobacter pylori was obtained using 31P nuclear magnetic resonance spectroscopy. Activities of enzymes which are part of the oxidative and non-oxidative phases of the pathway were observed directly in incubations of bacterial lysates with pathway intermediates. Generation of NADPH and 6-phosphogluconate from NADP+ and glucose 6-phosphate indicated the presence of glucose 6-phosphate dehydrogenase and 6-phosphogluconolactonase. Reduction of NADP+ with production of ribulose 5-phosphate from 6-phosphogluconate revealed 6-phosphogluconate dehydrogenase activity. Phosphopentose isomerase and transketolase activities were observed in incubations containing ribulose 5-phosphate and xylulose 5-phosphate, respectively. The formation of erythrose 4-phosphate from xylulose 5-phosphate and ribose 5-phosphate suggested the presence of transaldolase. The activities of this enzyme and triosephosphate isomerase were observed directly in incubations of bacterial lysates with dihydroxyacetone phosphate and sedoheptulose 7-phosphate. Glucose-6-phosphate isomerase activity was measured in incubations with fructos 6-phosphate. The presence of these enzymes in H. pylori suggested the existence of a pentose phosphate pathway in the bacterium, possibly as a mechanism to provide NADPH for reductive biosynthesis and ribose 5-phosphate for synthesis of nucleic acids.  相似文献   

14.
Hexokinase and glucose-6-phosphate dehydrogenase activities were increased in Xenopus laevis oocytes by microinjection of commercial pure enzymes. The effect of increased fractional activities on glycogen synthesis or on the production of 14CO(2) (the oxidative portion of the pentose phosphate pathway) was investigated by microinjection of [1-(14)C]glucose and measurements of the radioactivity in glycogen and CO(2). Control coefficients calculated from the data show that hexokinase plays an important role in the control of glycogen synthesis (control coefficient=0.7) but its influence on the control of the pentose phosphate pathway is almost nil (control coefficient=-0.01). Glucose-6-phosphate dehydrogenase injections did not affect the production of 14CO(2) by the pentose phosphate pathway, indicating that other factors control the operation of this pathway. In addition, an almost null control of this enzyme on glycogen synthesis flux was observed.  相似文献   

15.
Approximately the same levels of six of the seven enzymes catalyzing reactions of the pentose phosphate pathway are in the cisternae of washed microsomes from rat heart, spleen, lung, and brain. Renal and hepatic microsomes also have detectable levels of these enzymes except ribulose-5-phosphate epimerase and ribose-5-phosphate isomerase. Their location in the cisternae is indicated by their latencies, i.e. requirement for disruption of the membrane for activity. In addition, transketolase, transaldolase, and glucose-6-phosphatase, a known cisternal enzyme, are inactivated by chymotrypsin and subtilisin only in disrupted hepatic microsomes under conditions in which NADPH-cytochrome c reductase, an enzyme on the external surface, is inactivated equally in intact and disrupted microsomes. The failure to detect the epimerase and isomerase in hepatic microsomes is due to inhibition of their assays by ketopentose-5-phosphatase. Xylulose 5-phosphate is hydrolyzed faster than ribulose 5-phosphate. A mild heat treatment destroys hepatic xylulose-5-phosphatase and glucose-6-phosphatase without affecting acid phosphatase. These results plus the established wide distribution of glucose dehydrogenase, the microsomal glucose-6-phosphate dehydrogenase, and its localization to the lumen of the endoplasmic reticulum suggest that most mammalian cells have two sets of enzymes of the pentose phosphate pathway: one is cytoplasmic and the other is in the endoplasmic reticulum. The activity of the microsomal pentose phosphate pathway is estimated to be about 1.5% that of the cytoplasmic pathway.  相似文献   

16.
H A Berthon  P W Kuchel  P F Nixon 《Biochemistry》1992,31(51):12792-12798
The degree of control exerted by transketolase over metabolite flux in the nonoxidative pentose phosphate pathway in human erythrocytes was investigated using transketolase antiserum to modulate the activity of that enzyme. 31P NMR enabled the simultaneous measurement of the levels of pentose phosphate pathway metabolites following incubation of hemolysates with ribose 5-phosphate. The variations in metabolic flux which occurred as the transketolase activity of hemolysate samples was altered indicated that a high degree of control was exerted by transketolase. Investigations using transaldolase-depleted hemolysates showed that transaldolase exhibits a lesser degree of control over pathway flux. Experimental data were compared with simulations generated by a computer model encompassing the reactions of the classical nonoxidative pentose phosphate pathway. The sensitivity coefficients (also called "control strengths" or "flux-control coefficients") calculated from the computer simulations were 0.74 and 0.03 for transketolase and transaldolase, respectively.  相似文献   

17.
Gluconobacter oxydans is an industrially important bacterium that lacks a complete Embden–Meyerhof pathway (glycolysis). The organism instead uses the pentose phosphate pathway to oxidize sugars and their phosphorylated intermediates. However, the lack of glycolysis limits the amount of NADH as electron donor for electron transport phosphorylation. It has been suggested that the pentose phosphate pathway contributes to NADH production. Six enzymes predicted to play central roles in intracellular glucose and gluconate flux were heterologously overproduced in Escherichia coli and characterized to investigate the intracellular flow of glucose and gluconates into the pentose phosphate pathway and to explore the contribution of the pentose phosphate pathway to NADH generation. The key pentose phosphate enzymes glucose 6-phosphate dehydrogenase (Gox0145) and 6-phosphogluconate dehydrogenase (Gox1705) had dual cofactor specificities but were physiologically NADP- and NAD-dependent, respectively. Putative glucose dehydrogenase (Gox2015) was NADP-dependent and exhibited a preference for mannose over glucose, whereas a 2-ketogluconate reductase (Gox0417) displayed dual cofactor specificity for NAD(P)H. Furthermore, a putative gluconokinase and a putative glucokinase were identified. The gluconokinase displayed high activities with gluconate and is thought to shuttle intracellular gluconate into the pentose phosphate pathway. A model for the trafficking of glucose and gluconates into the pentose phosphate pathway and its role in NADH generation is presented. The role of NADPH in chemiosmotic energy conservation is also discussed.  相似文献   

18.
When intact Kalanchoë plants are illuminated NADP-linked malic dehydrogenase and three enzymes of the reductive pentose phosphate pathway, ribulose-5-phosphate kinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and sedoheptulose-1,7-diphosphate phosphatase, are activated. In crude extracts these enzymes are activated by dithiothreitol treatment. Light or dithiothreitol treatment does not inactivate the oxidative pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase. Likewise, neither light, in vivo, nor dithiothreitol, in vitro, affects fructose-1,6-diphosphate phosphatase. Apparently the potential for modulation of enzyme activity by the reductively activated light effect mediator system exists in Crassulacean acid metabolism plants, but some enzymes which are light-dark-modulated in the pea plant are not in Kalanchoë.  相似文献   

19.
The activities of enzymes of pentose phosphate pathway (PPP) viz. glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and carbon metabolism viz. phosphoenol pyruvate carboxylase, NADP- isocitrate dehydrogenase and NADP-malic enzyme were measured in the plant and bacteroid fractions of mungbean (ureide exporter) and lentil (amide exporter) nodules along with the developing roots for comparison. The enzymes of pentose phosphate pathway in legume cytosol had higher activities at a stage of maximum nitrogenase activity and higher sucrose metabolism. However, bacteroids had only limited capacity for this pathway. The specific activities of these enzymes were greater in ureide than in amide exporter. CO2 fixation via higher activity of phosphoenolpyruvate carboxylase in the plant part of the nodules in lentil might have been due to the greater synthesis of four carbon amino acids for amide export. The peak of NADP-isocitrate dehydrogenase in both legumes coincided with the pentose phosphate pathway enzymes at the time of high rates of sucrose metabolism and nitrogen fixation. Higher activities of NADP-malic enzyme were obtained in mungbean than in the lentil nodules. These findings are consistent with the role of these enzymes in providing reductant (NADPH) and substrates for energy yielding metabolism of bacteroids and carbon skeletons for ammonia assimilation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号