首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multifaceted functions of nitric oxide (NO) in the CNS are defined by the activity of neuronal NO synathase (nNOS). The activities of nNOS are modulated by posttranslational modifications, such as phosphorylation and ubiquitination, but whether it is modified by small ubiquitin-related modifier (SUMO) remains unknown. The aim of this study was to elucidate whether nNOS is posttranslationally modified by SUMO proteins. Bioinformatic analyses using SUMOplot and SUMOFI predicted that nNOS had potential SUMO modification sites. When HEK293T cells were transiently co-expressed with nNOS and SUMO-1, two bands corresponding to nNOS-SUMO-1 conjugates were detected. In addition, two nNOS-SUMO-1 conjugates were confirmed by an in vitro sumoylation assay using recombinant proteins. Furthermore, nNOS-SUMO-1 conjugates were identified by MALDI-QIT/TOF mass spectrometry. These findings indicate that nNOS is clearly defined as a SUMO-1 target protein both in vitro and at the cellular level. We next characterized specific enzymes in the nNOS-SUMO-1 conjugation cycle at the cellular level. SUMO-1 conjugation of nNOS depended on Ubc9 (E2). The interaction between nNOS and Ubc9 was facilitated by PIASxβ (E3). On the other hand, SUMO-1 was deconjugated from nNOS by SENP1 and SENP2. Overall, this study has newly identified that nNOS is posttranslationally modified by SUMO-1.  相似文献   

2.
We have analyzed the abundance of SUMO-conjugated species during the cell cycle in Xenopus egg extracts. The predominant SUMO conjugation products associated with mitotic chromosomes arose from SUMO conjugation of topoisomerase II. Topoisomerase II was modified exclusively by SUMO-2/3 during mitosis under normal circumstances, although we observed conjugation of topoisomerase II to SUMO-1 in extracts with exogenous SUMO-1 protein. Inhibition of SUMO modification by a dominant-negative mutant of the SUMO-conjugating enzyme Ubc9 (dnUbc9) did not detectably alter topoisomerase II activity, but it did increase the amount of unmodified topoisomerase II retained on mitotic chromosomes after high salt washing. dnUbc9 did not disrupt the assembly of condensed mitotic chromosomes or block progression of extracts through mitosis, but it did block the dissociation of sister chromatids at the metaphase-anaphase transition. Together, our results suggest that SUMO conjugation is important for chromosome segregation in metazoan systems, and that mobilization of topoisomerase II from mitotic chromatin may be a key target of this modification.  相似文献   

3.
SUMOylation is a posttranslational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in specific target proteins. Most known SUMOylation target proteins are located in the nucleus, but there is increasing evidence that SUMO may also be a key determinant of many extranuclear processes. Gap junctions consist of arrays of intercellular channels that provide direct transfer of ions and small molecules between adjacent cells. Gap junction channels are formed by integral membrane proteins called connexins, of which the best-studied isoform is connexin 43 (Cx43). Here we show that Cx43 is posttranslationally modified by SUMOylation. The data suggest that the SUMO system regulates the Cx43 protein level and the level of functional Cx43 gap junctions at the plasma membrane. Cx43 was found to be modified by SUMO-1, -2, and -3. Evidence is provided that the membrane-proximal lysines at positions 144 and 237, located in the Cx43 intracellular loop and C-terminal tail, respectively, act as SUMO conjugation sites. Mutations of lysine 144 or lysine 237 resulted in reduced Cx43 SUMOylation and reduced Cx43 protein and gap junction levels. Altogether, these data identify Cx43 as a SUMOylation target protein and represent the first evidence that gap junctions are regulated by the SUMO system.  相似文献   

4.
The tumor suppressor p53 is extensively regulated by post-translational modification, including modification by the small ubiquitin-related modifier SUMO. We show here that MDM2, previously shown to promote ubiquitin, Nedd8 and SUMO-1 modification of p53, can also enhance conjugation of endogenous SUMO-2/3 to p53. Sumoylation activity requires p53-MDM2 binding but does not depend on an intact RING finger. Both ARF and L11 can promote SUMO-2/3 conjugation of p53. However, unlike the previously described SUMO-1 conjugation of p53 by an MDM2-ARF complex, this activity does not depend on the ability of MDM2 to relocalize to the nucleolus. Interestingly, the SUMO consensus is not conserved in mouse p53, which is therefore not modified by SUMO-2/3. Finally, we show that conjugation of SUMO-2/3 to p53 correlates with a reduction of both activation and repression of a subset of p53-target genes.  相似文献   

5.
6.
7.
8.
The tumor suppressor p53 is extensively regulated by post-translational modification, including modification by the small ubiquitin-related modifier SUMO. We show here that MDM2, previously shown to promote ubiquitin, Nedd8 and SUMO-1 modification of p53, can also enhance conjugation of endogenous SUMO-2/3 to p53. Sumoylation activity requires p53-MDM2 binding but does not depend on an intact RING finger. Both ARF and L11 can promote SUMO-2/3 conjugation of p53. However, unlike the previously described SUMO-1 conjugation of p53 by an MDM2-ARF complex, this activity does not depend on the ability of MDM2 to relocalize to the nucleolus. Interestingly, the SUMO consensus is not conserved in mouse p53, which is therefore not modified by SUMO-2/3. Finally, we show that conjugation of SUMO-2/3 to p53 correlates with a reduction of both activation and repression of a subset of p53-target genes.Key words: p53, SUMO-2/3, sumoylation, MDM2, ARF, L11  相似文献   

9.
Post-translational modification by the conjugation of small ubiquitin-like modifiers is an essential mechanism to affect protein function. Currently, only a limited number of substrates are known for most of these modifiers, thus limiting our knowledge of their role and relevance for cellular physiology. Here, we report the development of a universal strategy for proteomic studies of ubiquitin-like modifiers. This strategy involves the development of stable transfected cell lines expressing a double-tagged modifier under the control of a tightly negatively regulated promoter, the induction of the expression and conjugation of the tagged modifier to cellular proteins, the tandem affinity purification of the pool of proteins covalently modified by the tagged modifier, and the identification of the modified proteins by LC and MS. By applying this methodology to the proteomic analysis of SUMO-1 and SUMO-3, we determined that SUMO-1 and SUMO-3 are stable proteins exhibiting half-lives of over 20 h, demonstrated that sumoylation with both SUMO-1 and SUMO-3 is greatly stimulated by MG-132 and heat shock treatment, demonstrated the preferential usage of either SUMO-1 or SUMO-3 for some known SUMO substrates, and identified 122 putative SUMO substrates of which only 27 appeared to be modified by both SUMO-1 and SUMO-3. This limited overlapping in the subset of proteins modified by SUMO-1 and SUMO-3 supports that the SUMO paralogues are likely to be functionally distinct. Three of the novel putative SUMO substrates identified, namely the polypyrimidine tract-binding protein-associated splicing factor PSF, the structural microtubular component alpha-tubulin, and the GTP-binding nuclear protein Ran, were confirmed as authentic SUMO substrates. The application of this universal strategy to the identification of the pool of cellular substrates modified by other ubiquitin-like modifiers will dramatically increase our knowledge of the biological role of the different ubiquitin-like conjugations systems in the cell.  相似文献   

10.
The modification of proteins by the small ubiquitin‐like modifier (SUMO) is known to regulate an increasing array of cellular processes. SUMOylation of the mitochondrial fission GTPase dynamin‐related protein 1 (DRP1) stimulates mitochondrial fission, suggesting that SUMOylation has an important function in mitochondrial dynamics. The conjugation of SUMO to its substrates requires a regulatory SUMO E3 ligase; however, so far, none has been functionally associated with the mitochondria. By using biochemical assays, overexpression and RNA interference experiments, we characterized the mitochondrial‐anchored protein ligase (MAPL) as the first mitochondrial‐anchored SUMO E3 ligase. Furthermore, we show that DRP1 is a substrate for MAPL, providing a direct link between MAPL and the fission machinery. Importantly, the large number of unidentified mitochondrial SUMO targets suggests a global role for SUMOylation in mitochondrial function, placing MAPL as a crucial component in the regulation of multiple conjugation events.  相似文献   

11.
12.
SUMOylation, the reversible covalent attachment of small ubiquitin-like modifier (SUMO) peptides has emerged as an important regulator of target protein function. Here we show, by characterization of the Toxoplasma gondii SUMO pathway, that the SUMO conjugation system operates in apicomplexan parasites. A gene encoding the SUMO tag was discovered as were genes encoding the various enzymes required for SUMO processing, ligation and release. Various SUMO conjugates were immuno-detected and by means of a global proteomic-based approach, we identified several T. gondii SUMOylated proteins that reveal many diverse cellular processes in which the modification plays a role. More specifically, SUMO conjugates were seen at the tachyzoite surface in response to signaling generated by host cell contact at the time of invasion. Also, under tissue culture conditions that stimulate bradyzoite differentiation (alkaline pH), we observed the conjugates at the parasitophorous vacuole membrane. The labeling was also at the surface of the mature cysts isolated from parasite-infected mouse brain. Overall, the SUMO conjugation system appears to be a complex and functionally heterogeneous pathway for protein modification in T. gondii with initial data indicating that it is likely to play a putative role in host cell invasion and cyst genesis.  相似文献   

13.
14.
15.
植物SUMO化修饰及其生物学功能   总被引:2,自引:0,他引:2  
SUMO化修饰是细胞内蛋白质功能调节的重要方式之一。植物中的SUMO化修饰途径由SUMO分子和SUMO化酶系组成。SUMO化修饰是一个可逆的动态过程。SUMO前体蛋白在SUMO特异性蛋白酶的作用下成熟,随后通过SUMO活化酶、SUMO结合酶和SUMO连接酶将靶蛋白SUMO化,最后SUMO特异性蛋白酶将SUMO与靶蛋白分离,重新进入SUMO化循环。初步研究表明,植物SUMO化修饰参与植物花期调控、激素信号转导、抗病防御以及逆境应答等生理过程。  相似文献   

16.
Regulation of protein functions can be achieved by posttranslational protein modifications. One of the most studied modifications has been conjugation to ubiquitin, which mainly targets substrate proteins for degradation by the 26 S proteasome. Recently, SUMO/sentrin, a ubiquitin-like protein has been characterized. This evolutionary conserved protein is conjugated to specific proteins in a way similar, but not identical, to ubiquitin and seems also to be involved in the regulation of protein localization or function. An increasing number of SUMO/sentrin substrates are currently described. We focus here on three major substrates of modification by SUMO: RanGAP1, PML, and IkappaBalpha proteins. These different examples illustrate how SUMO conjugation may be involved in the control of the level of critical proteins within the cell or in the modulation of subcellular localization and nucleocytoplasmic trafficking.  相似文献   

17.
SUMO化修饰是细胞内蛋白质功能调节的重要方式之一。植物中的SUMO化修饰途径由SUMO分子和SUMO化酶系组成。SUMO化修饰是一个可逆的动态过程。SUMO前体蛋白在SUMO特异性蛋白酶的作用下成熟, 随后通过SUMO活化酶、SUMO结合酶和SUMO连接酶将靶蛋白SUMO化, 最后SUMO特异性蛋白酶将SUMO与靶蛋白分离, 重新进入SUMO化循环。初步研究表明, 植物SUMO化修饰参与植物花期调控、激素信号转导、抗病防御以及逆境应答等生理过程。  相似文献   

18.
SUMO protein modification   总被引:2,自引:0,他引:2  
SUMO (small ubiquitin-related modifier) family proteins are not only structurally but also mechanistically related to ubiquitin in that they are posttranslationally attached to other proteins. As ubiquitin, SUMO is covalently linked to its substrates via amide (isopeptide) bonds formed between its C-terminal glycine residue and the epsilon-amino group of internal lysine residues. The enzymes involved in the reversible conjugation of SUMO are similar to those mediating the ubiquitin conjugation. Since its discovery in 1996, SUMO has received a high degree of attention because of its intriguing and essential functions, and because its substrates include a variety of biomedically important proteins such as tumor suppressor p53, c-jun, PML and huntingtin. SUMO modification appears to play important roles in diverse processes such as chromosome segregation and cell division, DNA replication and repair, nuclear protein import, protein targeting to and formation of certain subnuclear structures, and the regulation of a variety of processes including the inflammatory response in mammals and the regulation of flowering time in plants.  相似文献   

19.
A novel host cell posttranslational modification system, termed sumoylation, has recently been characterized. Sumoylation is an enzymatic process that is biochemically analogous to, but functionally distinct from, ubiquitinylation. As in ubiquitinylation, sumoylation involves the covalent attachment of a small protein moiety, SUMO, to substrate proteins. However, conjugation of SUMO does not typically lead to degradation of the substrate and instead has a more diverse array of effects on substrate function. As the list of sumoylation substrates has expanded, a common theme is that many substrates exhibit sumoylation-dependent subcellular distribution. While the molecular mechanisms by which sumoylation targets protein localization are still poorly understood, it is clear that this modification system is an important regulator of intracellular protein localization, particularly involving nuclear uptake and punctate intranuclear accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号