首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunotherapy represents an appealing option to specifically target CNS tumors using the immune system. In this report, we tested whether adjunctive treatment with the TLR-7 agonist imiquimod could augment antitumor immune responsiveness in CNS tumor-bearing mice treated with human gp100 + tyrosine-related protein-2 melanoma-associated Ag peptide-pulsed dendritic cell (DC) vaccination. Treatment of mice with 5% imiquimod resulted in synergistic reduction in CNS tumor growth compared with melanoma-associated Ag-pulsed DC vaccination alone. Continuous imiquimod administration in CNS tumor-bearing mice, however, was associated with the appearance of robust innate immune cell infiltration and hemorrhage into the brain and the tumor. To understand the immunological mechanisms by which imiquimod augmented antitumor immunity, we tested whether imiquimod treatment enhanced DC function or the priming of tumor-specific CD8+ T cells in vivo. With bioluminescent, in vivo imaging, we determined that imiquimod dramatically enhanced both the persistence and trafficking of DCs into the draining lymph nodes after vaccination. We additionally demonstrated that imiquimod administration significantly increased the accumulation of tumor-specific CD8+ T cells in the spleen and draining lymph nodes after DC vaccination. The results suggest that imiquimod positively influences DC trafficking and the priming of tumor-specific CD8+ T cells. However, inflammatory responses induced in the brain by TLR signaling must also take into account the local microenvironment in the context of antitumor immunity to induce clinical benefit. Nevertheless, immunotherapeutic targeting of malignant CNS tumors may be enhanced by the administration of the innate immune response modifier imiquimod.  相似文献   

2.
3.
The putative counterparts of human plasmacytoid pre-dendritic cells (pDCs) have been described in vivo in mouse models and very recently in an in vitro culture system. In this study, we report that large numbers of bone marrow-derived murine CD11c(+)B220(+) pDCs can be generated with Flt3 ligand (FL) as the sole exogenous differentiation/growth factor and that pDC generation is regulated in vivo by FL because FL-deficient mice showed a major reduction in splenic pDC numbers. We extensively analyzed bone marrow-derived CD11c(+)B220(+) pDCs and described their immature APC phenotype based on MHC class II, activation markers, and chemokine receptor level of expression. CD11c(+)B220(+) pDCs showed a nonoverlapping Toll-like receptor pattern of expression distinct from that of classical CD11c(+)B220(-) dendritic cells and were poor T cell stimulators. Stimulation of CD11c(+)B220(+) pDCs with oligodeoxynucleotides containing certain CpG motifs plus CD40 ligand plus GM-CSF led to increased MHC class II, CD80, CD86, and CD8alpha expression levels, to a switch in chemokine receptor expression that affected their migration, to IFN-alpha and IL-12 secretion, and to the acquisition of priming capacities for both CD4(+) and CD8(+) OVA-specific TCR-transgenic naive T cells. Thus, the in vitro generation of murine pDCs may serve as a useful tool to further investigate pDC biology as well as the potential role of these cells in viral immunity and other settings.  相似文献   

4.
Sustained intratumoral delivery of IL-12 and GM-CSF can overcome tumor immune suppression and promote T cell-dependent eradication of established disease in murine tumor models. However, the antitumor effector response is transient and rapidly followed by a T suppressor cell rebound. The mechanisms that control the switch from an effector to a regulatory response in this model have not been defined. Because dendritic cells (DC) can mediate both effector and suppressor T cell priming, DC activity was monitored in the tumors and the tumor-draining lymph nodes (TDLN) of IL-12/GM-CSF-treated mice. The studies demonstrated that therapy promoted the recruitment of immunogenic DC (iDC) to tumors with subsequent migration to the TDLN within 24-48 h of treatment. Longer-term monitoring revealed that iDC converted to an IDO-positive tolerogenic phenotype in the TDLN between days 2 and 7. Specifically, day 7 DC lost the ability to prime CD8(+) T cells but preferentially induced CD4(+)Foxp3(+) T cells. The functional switch was reversible, as inhibition of IDO with 1-methyl tryptophan restored immunogenic function to tolerogenic DC. All posttherapy immunological activity was strictly associated with conventional myeloid DC, and no functional changes were observed in the plasmacytoid DC subset throughout treatment. Importantly, the initial recruitment and activation of iDC as well as the subsequent switch to tolerogenic activity were both driven by IFN-γ, revealing the dichotomous role of this cytokine in regulating IL-12-mediated antitumor T cell immunity.  相似文献   

5.
NK cells represent a potent immune effector cell type that have the ability to recognize and lyse tumors. However, the existence and function of NK cells in the traditionally "immune-privileged" CNS is controversial. Furthermore, the cellular interactions involved in NK cell anti-CNS tumor immunity are even less well understood. We administered non-Ag-loaded, immature dendritic cells (DC) to CD8alpha knockout (KO) mice and studied their anti-CNS tumor immune responses. DC administration induced dramatic antitumor immune protection in CD8alpha KO mice that were challenged with B16 melanoma both s.c. and in the brain. The CNS antitumor immunity was dependent on both CD4+ T cells and NK cells. Administration of non-Ag-loaded, immature DC resulted in significant CD4+ T cell and NK cell expansion in the draining lymph nodes at 6 days postvaccination, which persisted for 2 wk. Finally, DC administration in CD8alpha KO mice was associated with robust infiltration of CD4+ T cells and NK cells into the brain tumor parenchyma. These results represent the first demonstration of a potent innate antitumor immune response against CNS tumors in the absence of toxicity. Thus, non-Ag-loaded, immature DC administration, in the setting of CD8 genetically deficient mice, can induce dramatic antitumor immune responses within the CNS that surpass the effects observed in wild-type mice. Our results suggest that a better understanding of the cross-talk between DC and innate immune cells may provide improved methods to vaccinate patients with tumors located both systemically and within the CNS.  相似文献   

6.
Establishment of host-protective memory T cells against tumors is the objective of an antitumor immunoprophylactic strategy such as reinforcing T cell costimulation via CD40-CD40L interaction. Previous CD40-targeted strategies assumed that T cell costimulation is an all-or-none phenomenon. It was unknown whether different levels of CD40L expression induce quantitatively and qualitatively different effector T cell responses. Using mice expressing different levels of CD40L, we demonstrated that the greater the T cell CD40L expression the less tumor growth occurred; the antitumor T cell response was host-protective. Lower levels of CD40L expression on T cells induced IL-10-mediated suppression of tumor-regressing effector CD8(+) T cells and higher productions of IL-4 and IL-10. Using mice expressing different levels of CD40 or by administering different doses of anti-CD40 Ab, similar observations were recorded implying that the induction of protumor or antitumor T cell responses was a function of the extent of CD40 cross-linking. IL-10 neutralization during priming with tumor Ags resulted in a stronger tumor-regressing effector T cell response. Using IL-10(-/-) DC for priming of mice expressing different levels of CD40L and subsequent transfer of the T cells from the primed mice to nu/nu mice, we demonstrated the protumor role of IL-10 in the induction of tumor-promoting T cells. Our results demonstrate that a dose-dependent cross-linking of a costimulatory molecule dictates the functional phenotype of the elicited effector T cell response. The T cell costimulation is a continuum of a function that induces not only graded T cell responses but also two counteracting responses at two extremes.  相似文献   

7.
CD14(+) interstitial cells reside beneath the epidermis of skin and mucosal tissue and may therefore play an important role in viral infections and the shaping of an antiviral immune response. However, in contrast to dendritic cells (DC) or blood monocytes, these antigen-presenting cells (APC) have not been well studied. We have previously described long-lived CD14(+) cells generated from CD34(+) hematopoietic progenitors, which may represent model cells for interstitial CD14(+) APC. Here, we show that these cells carry DC-SIGN and differentiate into immature DC in the presence of granulocyte-macrophage colony-stimulating factor. We have compared the CD14(+) cells and the DC derived from these cells with respect to dengue virus and human immunodeficiency virus type 1 (HIV-1) infection. Both cell types are permissive to dengue virus infection, but the CD14(+) cells secrete the anti-inflammatory cytokine interleukin 10 and no tumor necrosis factor alpha. Regarding HIV, the CD14(+) cells are permissive to HIV-1, release higher p24 levels than the derived DC, and more efficiently activate HIV Pol-specific CD8(+) memory T cells. The CD14(+) DC precursors infected with either virus retain their DC differentiation potential. The results suggest that interstitial CD14(+) APC may contribute to HIV-1 and dengue virus infection and the shaping of an antiviral immune response.  相似文献   

8.
IL-21 is an immune-stimulatory four alpha helix cytokine produced by activated T cells. To study the in vivo antitumor activities of IL-21, TS/A murine mammary adenocarcinoma cells were genetically modified to secrete IL-21 (TS/A-IL-21). These cells developed small tumors that were subsequently rejected by 90% of s.c. injected syngeneic mice. Five days after injection, TS/A-IL-21 tumors showed numerous infiltrating granulocytes, NK cells, and to a lesser extent CD8(+) T cells, along with the expression of TNF-alpha, IFN-gamma, and endothelial adhesion molecules ICAM-1 and VCAM-1. At day 7, CD8(+) and CD4(+) T cells increased together with IFN-gamma, and the CXC chemokines IFN-gamma-inducible protein 10, monokine induced by IFN-gamma, and IFN-inducible T cell alpha-chemoattractant. The TS/A-IL-21 tumor displayed a disrupted vascular network with abortive sprouting and signs of endothelial cell damage. In vivo depletion experiments by specific Abs showed that rejection of TS/A-IL-21 cells required CD8(+) T lymphocytes and granulocytes. When injected in IFN-gamma-deficient mice, TS/A-IL-21 cells formed tumors that regressed in only 29% of animals, indicating a role for IFN-gamma in IL-21-mediated antitumor response, but also the existence of IFN-gamma-independent effects. Most immunocompetent mice rejecting TS/A-IL-21 cells developed protective immunity against TS/A-pc (75%) and against the antigenically related C26 colon carcinoma cells (61%), as indicated by rechallenge experiments. A specific CTL response against the gp70-env protein of an endogenous murine retrovirus coexpressed by TS/A and C26 cells was detected in mice rejecting TS/A-IL-21 cells. These data suggest that IL-21 represents a suitable adjuvant in inducing specific CTL responses.  相似文献   

9.
We recently reported that NK cells and CD8(+) T cells contribute to the antimetastatic effect in the liver induced by alpha-galactosylceramide (alpha-GalCer). In the present study, we further investigated how CD8(+) T cells contribute to the antimetastatic effect induced by alpha-GalCer. The injection of anti-CD8 Ab into mice 3 days before alpha-GalCer injection (2 days before intrasplenic injection of B16 tumors) did not inhibit IFN-gamma production nor did it reduce the NK activity of liver mononuclear cells after alpha-GalCer stimulation. However, it did cause a reduction in the proliferation of liver mononuclear cells and mouse survival time. Furthermore, although the depletion of NK and NKT cells (by anti-NK1.1 Ab) 2 days after alpha-GalCer injection no longer decreased the survival rate of B16 tumor-injected mice, the depletion of CD8(+) T cells did. CD122(+)CD8(+) T cells in the liver increased after alpha-GalCer injection, and antitumor cytotoxicity of CD8(+) T cells in the liver gradually increased until day 6. These CD8(+) T cells exhibited an antitumor cytotoxicity toward not only B16 cells, but also EL-4 cells, and their cytotoxicity significantly decreased by the depletion of CD122(+)CD8(+) T cells. The critical, but bystander role of CD122(+)CD8(+) T cells was further confirmed by adoptive transfer experiments into CD8(+) T cell-depleted mice. Furthermore, it took 14 days after the first intrasplenic B16/alpha-GalCer injection for the mice to generate CD8(+) T cells that can reject s.c. rechallenged B16 cells. These findings suggest that alpha-GalCer activates bystander antitumor CD122(+)CD8(+) T cells following NK cells and further induces an adaptive antitumor immunity due to tumor-specific memory CD8(+) CTLs.  相似文献   

10.
Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8+ T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8+ T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1+ vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells.  相似文献   

11.
Xia HJ  Ma JP  Zhang GH  Han JB  Wang JH  Zheng YT 《PloS one》2011,6(12):e29036
Non-human primates such as Chinese rhesus macaques (Ch Rhs) provide good animal models for research on human infectious diseases. Similar to humans, there are two principal subsets of dendritic cells (DCs) in the peripheral blood of Ch Rhs: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). In this study, two-color fluorescence-activated cell sorting (FACS) analyses were used to identify the main DC subsets, namely CD1c(+) mDCs and pDCs from Ch Rhs. Then, the apoptosis and immunophenotype changes of DCs subsets were first described during the acute phase of SIVmac239 infection. Both the DCs subsets showed decreased CD4 expression and enhanced CCR5 expression; in particular, those of pDCs significantly changed at most time points. Interestingly, the plasma viral loads were negatively correlated with CD4 expression, but were positively correlated with CCR5 expression of pDCs. During this period, both CD1c(+) mDCs and pDCs were activated by enhancing expressions of co-stimulatory molecules, accompanied with increase in CCR7. Either CD80 or CD86 expressed on CD1c(+) mDCs and pDCs was positively correlated with the plasma viral loads. Our analysis demonstrates that the pDCs were more prone to apoptosis after infection during the acute phase of SIVmac239 infection, which may be due to their high expressions of CD4 and CCR5. Both DCs subsets activated through elevating the expression of co-stimulatory molecules, which was beneficial in controlling the replication of SIV. However, a mere broad immune activation initiated by activated DCs may lead to tragic AIDS progression.  相似文献   

12.
We have shown previously that IFN-gamma-inducing cytokines such as IL-12 can mediate potent antitumor effects against murine solid tumors. IL-27 is a newly described IL-12-related cytokine that potentiates various aspects of T and/or NK cell function. We hypothesized that IL-27 might also mediate potent antitumor activity in vivo. TBJ neuroblastoma cells engineered to overexpress IL-27 demonstrated markedly delayed growth compared with control mice, and complete durable tumor regression was observed in >90% of mice bearing either s.c. or orthotopic intra-adrenal tumors, and 40% of mice bearing induced metastatic disease. The majority of mice cured of their original TBJ-IL-27 tumors were resistant to tumor rechallenge. Furthermore, TBJ-IL-27 tumors were heavily infiltrated by CD8(+) T cells, and draining lymph node-derived lymphocytes from mice bearing s.c. TBJ-IL-27 tumors are primed to proliferate more readily when cultured ex vivo with anti-CD3/anti-CD28 compared with lymphocytes from mice bearing control tumors, and to secrete higher levels of IFN-gamma. In addition, marked enhancement of local IFN-gamma gene expression and potent up-regulation of cell surface MHC class I expression are noted within TBJ-IL-27 tumors compared with control tumors. Functionally, these alterations occur in conjunction with the generation of tumor-specific CTL reactivity in mice bearing TBJ-IL-27 tumors, and the induction of tumor regression via mechanisms that are critically dependent on CD8(+), but not CD4(+) T cells or NK cells. Collectively, these studies suggest that IL-27 could be used therapeutically to potentiate the host antitumor immune response in patients with malignancy.  相似文献   

13.
Dendritic cell (DC)-based antitumor immunotherapy is a promising cancer therapy. We have previously shown that tumor-derived TGF-beta limits the efficacy of the DC/tumor fusion vaccine in mice. In the current study we investigated the effect of neutralizing tumor-derived TGF-beta on the efficacy of the DC/tumor fusion vaccine. An adenovirus encoding human TGF-beta receptor type II fused to the Fc region of human IgM (Adv-TGF-beta-R) or a control adenovirus encoding LacZ (Adv-LacZ) was used to express a soluble form of the neutralizing TGF-beta receptor (TGF-beta-R). Murine breast carcinoma cells, 4T1, but not bone marrow-derived DCs, were successfully transfected with Adv-TGF-beta-R (4T1+Adv-TGF-beta-R) using a multiplicity of infection of 300. Immunization with irradiated 4T1+Adv-TGF-beta-R tumor cells conferred enhanced antitumor immunity compared with immunization with irradiated 4T1+Adv-LacZ tumor cells. The DC/4T1+Adv-TGF-beta-R fusion vaccine offered enhanced protective and therapeutic efficacy compared with the DC/4T1-Adv-LacZ fusion vaccine. Because TGF-beta is known to induce regulatory T cells (Tregs), we further showed that the DC/4T1+Adv-TGF-beta-R fusion vaccine induced fewer CD4(+)CD25(+)Foxp3(+) Tregs than the DC/4T1+Adv-LacZ fusion vaccine in vitro and in vivo. The suppressive role of splenic CD4(+)CD25(+) Tregs isolated from mice immunized with DC/4T1+Adv-LacZ was demonstrated using a CTL killing assay. Similar enhanced therapeutic efficacy was observed in murine renal cell carcinoma, RenCa, which expresses a high level of TGF-beta. We conclude that the blockade of tumor-derived TGF-beta reduces Treg induction by the DC/tumor fusion vaccine and enhances antitumor immunity. This may be an effective strategy to enhance human DC-based antitumor vaccines.  相似文献   

14.
Bortezomib, a proteasome inhibitor, is a chemotherapeutic drug that is commonly used to treat a variety of human cancers. The antitumor effects of bortezomib-induced tumor cell immunogenicity have not been fully delineated. In this study, we examined the generation of immune-mediated antitumor effects in response to treatment by bortezomib in a murine ovarian tumor model. We observed that tumor-bearing mice that were treated with bortezomib had CD8(+) T cell-mediated inhibition of tumor growth. Furthermore, the comparison of tumor cell-based vaccines that were produced from tumor cells treated or untreated with bortezomib showed vaccination with drug-treated tumor cell-based vaccines elicited potent tumor-specific CD8(+) T cell immune response with improved therapeutic antitumor effect in tumor-bearing mice. Conversely, the untreated tumor cell-based vaccines led to no appreciable antitumor response. Treatment of tumor cells with bortezomib led to the upregulation of Hsp60 and Hsp90 on the cell surface and promoted their phagocytosis by dendritic cells (DCs). However, cell surface expression of Hsp60, instead of Hsp90, is the more important determinant of whether bortezomib-treated tumor cells can generate tumor-specific CD8(+) T cells. CD11c(+) DCs that were treated with bortezomib in vitro had enhanced phagocytic activities. In addition, CD11c(+) DCs from bortezomib-treated tumor-bearing mice had increased maturation. At lower concentrations, bortezomib had no inhibitory effects on T cell proliferation. Taken together, our data indicate that bortezomib can render tumor cells immunogenic by upregulating the cell surface expression of heat shock protein 60 and heat shock protein 90, as well as improve DC function, which results in potent immune-mediated antitumor effects.  相似文献   

15.
Incorporation of Ags by dendritic cells (DCs) increases when Ags are targeted to endocytic receptors by mAbs. We have previously demonstrated in the mouse that mAbs against C-type lectins administered intradermally are taken up by epidermal Langerhans cells (LCs), dermal Langerin(neg) DCs, and dermal Langerin(+) DCs in situ. However, the relative contribution of these skin DC subsets to the induction of immune responses after Ag targeting has not been addressed in vivo. We show in this study that murine epidermal LCs and dermal DCs transport intradermally injected mAbs against the lectin receptor DEC-205/CD205 in vivo. Skin DCs targeted in situ with mAbs migrated through lymphatic vessels in steady state and inflammation. In the skin-draining lymph nodes, targeting mAbs were found in resident CD8α(+) DCs and in migrating skin DCs. More than 70% of targeted DCs expressed Langerin, including dermal Langerin(+) DCs and LCs. Numbers of targeted skin DCs in the nodes increased 2-3-fold when skin was topically inflamed by the TLR7 agonist imiquimod. Complete removal of the site where OVA-coupled anti-DEC-205 had been injected decreased endogenous cytotoxic responses against OVA peptide-loaded target cells by 40-50%. Surprisingly, selective ablation of all Langerin(+) skin DCs in Langerin-DTR knock-in mice did not affect such responses independently of the adjuvant chosen. Thus, in cutaneous immunization strategies where Ag is targeted to DCs, Langerin(+) skin DCs play a major role in transport of anti-DEC-205 mAb, although Langerin(neg) dermal DCs and CD8α(+) DCs are sufficient to subsequent CD8(+) T cell responses.  相似文献   

16.
Wild-type mice immunized with MART-1 melanoma Ag-engineered dendritic cells (DC) generate strong Ag-specific immunity that has an absolute requirement for both CD8(+) and CD4(+) T cells. DC administration to CD8 alpha knockout mice displayed unexpectedly enhanced levels of protection to tumor challenge despite this deficiency in CD8(+) T cells and the inability to mount MHC class I-restricted immune responses. This model has the following features: 1) antitumor protection is Ag independent; 2) had an absolute requirement for CD4(+) and NK1.1(+) cells; 3) CD4(+) splenocytes are responsible for cytokine production; 4) lytic cells in microcytotoxicity assays express NK, but lack T cell markers (NK1.1(+) alpha beta TCR(-) CD3(-)); and 5) the lytic phenotype can be transferred to naive CD8 alpha knockout mice by NK1.1(+) splenocytes. Elucidation of the signaling events that activate these effective cytotoxic cells and the putative suppressive mechanisms in a wild-type environment may provide means to enhance the clinical activity of DC-based approaches.  相似文献   

17.
Exosomes derived from dendritic cells or tumor cells are a population of nanometer-sized membrane vesicles that can induce specific antitumor immunity. During investigation of the effects of hyperthermia on antitumor immune response, we found that exosomes derived from heat-stressed tumor cells (HS-TEX) could chemoattract and activate dendritic cells (DC) and T cells more potently than that by conventional tumor-derived exosomes. We show that HS-TEX contain chemokines, such as CCL2, CCL3, CCL4, CCL5, and CCL20, and the chemokine-containing HS-TEX are functionally competent in chemoattracting CD11c(+) DC and CD4(+)/CD8(+) T cells both in vitro and in vivo. Moreover, the production of chemokine-containing HS-TEX could be inhibited by ATP inhibitor, calcium chelator, and cholesterol scavenger, indicating that the mobilization of chemokines into exosomes was ATP- and calcium-dependent and via a lipid raft-dependent pathway. We consistently found that the intracellular chemokines could be enriched in lipid rafts after heat stress. Accordingly, intratumoral injection of HS-TEX could induce specific antitumor immune response more efficiently than that by tumor-derived exosomes, thus inhibiting tumor growth and prolonging survival of tumor-bearing mice more significantly. Therefore, our results demonstrate that exosomes derived from HS-TEX represent a kind of efficient tumor vaccine and can chemoattract and activate DC and T cells, inducing more potent antitumor immune response. Release of chemokines through exosomes via lipid raft-dependent pathway may be a new method of chemokine exocytosis.  相似文献   

18.
Can self-specific T cells that have escaped intrathymic deletion be exploited to generate antitumor immunity? To determine whether antitumor immunity to a self-Ag for which central tolerance exists can be generated, a mouse model is used in which a fragment of the influenza nucleoprotein (NP) is expressed as a transgene under the control of the H-2K promoter in C57BL/10 mice (B10NP mice). In these mice an oligoclonal population of NP-specific T cells escapes thymic and peripheral deletion and can be activated upon immunization. The main hallmark of these self-specific CD8(+) T cells is diminished avidity for the pertinent MHC/peptide complex. We show in this study that intranasal infection with influenza virus can stimulate low-avidity NP-specific T cells to recognize and destroy NP-expressing microtumors in the lung, but not NP-expressing tumors growing s.c. Only a memory NP-specific CD8(+) T cell response can suppress the growth of an s.c. growing NP-expressing tumor. This delay in tumor growth is associated with a dramatic increase in the number of circulating NP-specific CD8(+) T cells. In addition, cultured memory NP-specific T cells require approximately 100-fold less Ag to induce NP-specific lysis than primary T cells, consistent with the observation that memory T cells have an increased avidity due to affinity maturation. Finally, during an NP-specific memory response, substantial numbers of low-avidity NP-specific T cells can be recovered from s.c. growing tumors. Together, these findings indicate that, when only a low-avidity repertoire is available to generate antitumor immunity, the best strategy may be to enhance memory responses.  相似文献   

19.
Immunotherapy using dendritic cells (DCs) has the potential to activate both T cells and NK cells. We previously demonstrated the long-lasting antitumor responses by NK cells following immunization with bone marrow-derived DCs. In the current study, we demonstrate that long-term antitumor NK responses require endogenous DCs and a subset of effector memory CD4(+) T (CD4(+) T(EM)) cells. One month after DC immunization, injection of a tumor into DC-immunized mice leads to an increase in the expression of CXCL10 by endogenous DCs, thus directing NK cells into the white pulp where the endogenous DCs bridged CD4(+) T(EM) cells and NK cells. In this interaction, CD4(+) T(EM) cells express CD40L, which matures the endogenous DCs, and produce cytokines, such as IL-2, which activates NK cells. These findings suggest that DC vaccination can sustain long-term innate NK cell immunity but requires the participation of the adaptive immune system.  相似文献   

20.
The TLR7 agonist imiquimod has been used successfully as adjuvant for skin treatment of virus-associated warts and basal cell carcinoma. The effects of skin TLR7 triggering on respiratory leukocyte populations are unknown. In a placebo-controlled experimental animal study we have used multicolour flow cytometry to systematically analyze the modulation of respiratory leukocyte subsets after skin administration of imiquimod. Compared to placebo, skin administration of imiquimod significantly increased respiratory dendritic cells (DC) and natural killer cells, whereas total respiratory leukocyte, alveolar macrophages, classical CD4+ T helper and CD8+ T killer cell numbers were not or only moderately affected. DC subpopulation analyses revealed that elevation of respiratory DC was caused by an increase of respiratory monocytic DC and CD11b(hi) DC subsets. Lymphocyte subpopulation analyses indicated a marked elevation of respiratory natural killer cells and a significant reduction of B lymphocytes. Analysis of cytokine responses of respiratory leukocytes after stimulation with Klebsiella pneumonia indicated reduced IFN-γ and TNF-α expression and increased IL-10 and IL-12p70 production after 7 day low dose skin TLR7 triggering. Additionally, respiratory NK cytotoxic activity was increased after 7d skin TLR7 triggering. In contrast, lung histology and bronchoalveolar cell counts were not affected suggesting that skin TLR7 stimulation modulated respiratory leukocyte composition without inducing overt pulmonary inflammation. These data suggest the possibility to modulate respiratory leukocyte composition and respiratory cytokine responses against pathogens like Klebsiella pneumonia through skin administration of a clinically approved TLR7 ligand. Skin administration of synthetic TLR7 ligands may represent a novel, noninvasive means to modulate respiratory immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号