首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The effects of either organic (urea and glutamine) or inorganic nitrogen forms (nitrate and ammonium) on dry matter accumulation in shoots and roots and on nitrogen assimilatory enzyme activities were studied in two Catasetum fimbriatum genotypes. Both genotypes, which had inverse patterns of dry matter partitioning between shoots and roots, were aseptically incubated in gelled culture media containing 6 mol m−3 of nitrogen and incubated in growth chamber for 30 and 60 days. In vivo nitrate reductase, glutamine synthetase, glutamate dehydrogenase activities as well as free ammonium contents were determined in shoots and roots of plants grown in four different nitrogen sources. Nitrogen assimilatory enzyme activities showed the highest values in the genotype that accumulated dry matter predominantly in the shoots. The nitrogen sources supplied affected dry matter accumulation in shoots and roots of both C. fimbriatum genotypes; however, they were not enough to change the characteristic pattern of dry matter partitioning of each genotype. On the other hand, the differences in the root/shoot ratio found among nitrogen treatments were relatively higher in the genotype that directed dry matter mainly to roots than in the genotype that allocates biomass to shoots. Our results suggest that NADH-dependent glutamate dehydrogenase plays an important role in ammonium assimilation in C. fimbriatum plants, particularly in the root system. Nitrogen metabolism and the dry matter partitioning of the two genotypes are discussed.  相似文献   

2.
Apical shoots and Lateral buds of the epiphytic orchid Catasetum fimbriatum give rise to rootless etiolated stolons, when cultured in the presence of light and then transferred to the dark. The stolons are characterized by fast and continuous apical longitudinal growth. Measurements of four endogenous cytokinin, indole-3-acetic acid (IAA) and abscisic acid (ABA) levels in etiolated shoots and light-grown plants were low. However, after transfer of green plants to the dark, cytokinin Levels increased 3- and 7-fold by 10 and 30 days of incubation, respectively. IAA levels also increased significantly, but the increase was not as great as for cytokinins. A similar trend was observed in the roots. A close relationship seems to exist between both cytokinin accumulation and the formation of etiolated stolons. Variations in ABA levels were practically inconspicuous. The presence of paclobutrazol in the medium, a potent inhibitor of gibberellin synthesis, strongly inhibited etiolated and non-etiolated longitudinal shoot growth, although no apparent effect was observed on apical meristem activity.  相似文献   

3.
Fluctuations in carbon partitioning were investigated during cellular expansion and induction of vegetative bud formation in cultures of isolated root tips of Catasetum fimbriatum, Orchidaceae. Root tip segments maintained on culture media supplemented with indolebutyric acid showed longitudinal growth accompanied by increased levels of glucose and fructose, despite the reduction in total soluble carbohydrate content. Induction of morphogenesis in the presence of zeatin was inversely related to cellular expansion which coincided with accumulation of soluble carbohydrates in the root segments. Vegetative buds had the highest levels of carbohydrates which decreased progressively during the development of plants. This suggests high carbon and energy costs for the production of new organs during growth and development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
 Shoot initiation and development was observed in Catasetum (Orchidaceae) cultured on hormone-free media. Endogenous auxin and cytokinin contents were determined in excised root tips of two Catasetum fimbriatum genotypes incubated in a hormone-free medium. During the culture period, significant accumulation of all measured cytokinins was observed in the isolated root tips of both genotypes, reducing, by the 10th day of incubation, the auxin/cytokinin ratio tenfold in both genotypes. Root excision and the competence for shoot development in C. fimbriatum may be attributable to the establishment of an endogenous auxin/cytokinin ratio favoring cytokinins. Received: 20 August 1998 / Revision received: 30 January 1999 / Accepted: 15 February 1999  相似文献   

5.
Batch cultures of Thiocapsa roseopersicina strain 6311, Thiocystis violacea strain 2311 and Chromatium vinosum strain 1611, grown anaerobically in the light on sulfide with urea, ammonia, N2 or casein hydrolysate as nitrogen source exhibited urease activity, while Chromatium vinosum strain D neither showed any degradation of urea nor urease activity on any of the nitrogen sources tested.In T. violacea and C. vinosum strain 1611 urease was little affected by the nitrogen source and seemed to be constitutive. In T. roseopersicina, however, the enzyme was repressed by ammonia (although a low basal level of activity remained) and, to a lesser degree, induced by urea: The presense of urea stimulated a temporary increase in urease activity in the early exponential growth phase. The highest activities, however, were found after growth on N2, and especially on 0.1% casein hydrolysate (in the absence or after exhaustion of external ammonia), but not before the stationary growth phase was reached. Derepressed urease synthesis required an efficient external source of nitrogen.In cultures of T. roseopersicina urease activity showed a periodic oscillation which depended on the repeated feeding with sulfide and subsequent variation in the sulfur content of the cells. The possible reasons of this oscillation are discussed.  相似文献   

6.
7.
The epiphytic habitat is potentially one of the most stressful environments for plants, making the effective developmental control in response to external cues critical for epiphyte survival. Because ethylene mediates several abiotic stresses in plants, here, we have examined the ethylene influence in both shoot and root systems of the epiphytic orchid Catasetum fimbriatum. Under controlled conditions, ethylene production was quantified during an entire growth cycle of C. fimbriatum development in vitro, while treatments modulating either ethylene concentration or perception were carried out over the early growth phase of these plants. After treatments, growth measurements and histological features were studied in both shoot and root tissues. Ethylene production showed a decreasing trend over the period of organ elongation; however, it increased considerably when leaves were shed, and a new axillary bud was initiating. The early exposure of young plants to higher concentrations of ethylene triggered morphogenic responses that included root hair formation instead of velamen, and a combination of inhibitory effects (decreases in both stem enlargement and cellular/organ elongation) and inductive effects (increases in leaf and root formation, bud initiation and cellular thickening) on plant growth, which favored biomass allocation to roots. Conversely, inhibition of ethylene perception over the plant growth phase generally resulted in the opposite morphogenic responses. Our data indicate that periodic variations in ethylene concentration and/or sensitivity seem to modulate several developmental features in shoot and root systems of C. fimbriatum which could have adaptive significance during the growing phase of this epiphytic orchid.  相似文献   

8.
9.
Using a light-emitting diode (LED) as the light source, the effects of eight different light treatments [white light (control, W), purple light (P), blue light (B), red light (R), green light (G), yellow light (Y), red–blue light in a 9:1 ratio (9R/1B), and red–blue light in a 4:1 ratio (4R/1B)] on the growth, quality and nitrogen metabolism of lettuce were studied. The results showed that compared with the white light, the purple light, blue light, red light, and the red-blue light combination could all increase the biomass of the aboveground part of lettuce to various degrees, while green light and yellow light inhibited lettuce growth. Under blue light, the contents of soluble protein and flavonoid in lettuce were the highest; under red light, the soluble sugar content was the highest, while the contents of soluble protein, free amino acids, and vitamin C (VC) were relatively higher under the 4R/1B light condition. Compared with white light, the sources of purple, blue, and red lights as well as the red–blue light combination all significantly reduced nitrate accumulation in lettuce, and the activities of the nitrogen (N) metabolism-related enzymes such as nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase were increased to varying degrees. In contrast, the contents of nitrate and ammonium N were significantly accumulated in lettuce under green light, and the activities of relative enzymes were significantly reduced. Therefore, the purple light, blue light, and red–blue combination light sources could promote N assimilation and improve the aboveground biomass accumulation in lettuce by improving the activity of the N metabolism-related enzymes in lettuce. Particularly under the 4R/1B light source, the biomass, soluble protein, VC, and total amino acid content were rather high in lettuce, which indicated that the 4R/1B light source could better effectively improve the nutritional quality and promote the growth of lettuce, while yellow light and green light are not suitable to serve as direct sources in a plant factory. These results provide a certain theoretical basis for the regulation of the light environment in cultivation facilities.  相似文献   

10.
The metabolism of trimethylamine (TMA) and dimethylamine (DMA) in Arthrobacter P1 involved the enzymes TMA monooxygenase and trimethylamine-N-oxide (TMA-NO) demethylase, and DMA monooxygenase, respectively. The methylamine and formaldehyde produced were further metabolized via a primary amine oxidase and the ribulose monophosphate (RuMP) cycle. The amine oxidase showed activity with various aliphatic primary amines and benzylamine. The organism was able to use methylamine, ethylamine and propylamine as carbon-and nitrogen sources for growth. Butylamine and benzylamine only functioned as nitrogen sources. Growth on glucose with ethylamine, propylamine, butylamine and benzylamine resulted in accumulation of the respective aldehydes. In case of ethylamine and propylamine this was due to repression by glucose of the synthesis of the aldehyde dehydrogenase(s) required for their further metabolism. Growth on glucose/methylamine did not result in repression of the RuMP cycle enzyme hexulose-6-phosphate synthase (HPS). High levels of this enzyme were present in the cells and as a result formaldehyde did not accumulate. Ammonia assimilation in Arthrobacter P1 involved NADP-dependent glutamate dehydrogenase (GDH), NAD-dependent alanine dehydrogenase (ADH) and glutamine synthetase (GS) as key enzymes. In batch cultures both GDH and GS displayed highest levels during growth on acetate with methylamine as the nitrogen source. A further increase in the levels of GS, but not GDH, was observed under ammonia-limited growth conditions in continuous cultures with acetate or glucose as carbon sources.Abbreviations HPS hexulose-6-phosphate synthase - RuMP ribulose monophosphate - DMA dimethylamine - TMA trimethylamine - TMA-NO trimethylamine-N-oxide - ICL isocitrate lyase - GS glutamine synthetase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase - GOGAT glutamate synthase  相似文献   

11.
12.
13.
Mitotic chromosomes of 12 species of Catasetum were assessed to contribute with the karyotypic study of the subtribe Catasetinae (Orchidaceae), expanding the knowledge of this group in terms of chromosomes and supporting its taxonomic and evolutionary analysis. The species are maintained in cultivation in the greenhouse of the Department of Plant Biology/IB/UNICAMP and in the “Orquidário Frederico Carlos Hoehne” of the Botanical Garden of São Paulo. Chromosome counts ranged from 2n = 54 to 2n = 108. Karyotypes were prepared for all species studied, in which there was a predominance of metacentric chromosomes and some submetacentric ones. The chromosome size ranged from 0.5 to 4.9 μm, the total chromosome length ranged from 34.7 to 78.7 μm and the asymmetry index TF% ranged from 21.2 to 42.3. The results obtained so far favor the taxonomy of the genus, allowing to distinguish species with very similar external morphology.  相似文献   

14.
本研究旨在阐明出芽短梗霉在不同氮源培养基中形态和胞外多糖的积累及化学成分变化。采用摇瓶法培养出芽短梗霉。三种培养基的氮源分别为硝酸钠(培养基1,M1)、硫酸氨、酵母膏(培养基2,M2)和硫酸氨、蛋白胨和酵母膏(培养基3,M3)。M1培养基中,菌丝体和单细胞的生物量积累均比M2、M3低,但胞外多糖的产量则等于甚至略超过M2和M3。在指数生长的前期,白色菌丝体和酵母状细胞状态占优势。指数生长的后期,以厚垣孢子、肿大细胞和黑色菌丝体占优势。胞外多糖都能为茁霉多糖酶水解为麦芽糖和麦芽三糖,说明这些多糖的化学组成都具有(1→4,1→6)-α结构的茁霉多糖。但M1中产生的茁霉多糖结构单元为麦芽糖和麦芽三糖,且二者比例相当。M2中茁霉多糖的麦芽糖结构单元明显减少,而M3中144h后麦芽糖结构单元完全消失。这似乎表明氧化性的氮源和低溶解氧水平可能是造成茁霉多糖结构单元同时具有麦芽糖和麦芽三糖的原因。  相似文献   

15.
16.
17.
A sterile mineral salts broth was fortified with different additives, inoculated with conidia ofPenicillium rubrum P-13, and incubated quiescently for 14 days or with shaking for 3 to 5 days. Maximal fungal growth and rubratoxin production occurred when the broth contained 20% sucrose. Broth with 10% glucose, 10% fructose, 5% maltose, or 1% asparagine supported formation of substantial amounts of rubratoxin (52.9–78.5 mg/100 ml). When the broth was fortified with glucose plus lysine, arginine aspartic acid, cystine, ammonium citrate, or ammonium phosphate, moderate amounts (27.5–39.5 mg/100 ml) of rubratoxin and mycelium (0.1–1.5 g/100 ml) were produced. Presence in the broth of 5% galactose or starch resulted in accumulation of small amounts (22.2 and 24.6 mg/100 ml, respectively) of rubratoxin and mold tissue (0.70 and 0.5 g/ 100 ml, respectively). Whereas some toxin was recovered from mineral salts broth fortified with lactose or ribose, toxin was not recovered when the mold grew in broth containing mannitol or fumarate. With the exception of gluconate which supported some growth and toxin formation and ethanol which permitted formation of small amounts of toxin, other carbon sources resulted in little or no fungal growth and no toxin formation. Yields of rubratoxin decreased with an increase in amount of agitation or length of incubation ofP. rubrum cultures. Mold growth increased and toxin formation decreased with an increase in volume of culture.  相似文献   

18.
Summary Three cultivation systems were compared. In one system the alders were grown hydroponically. In the two other systems the alders were planted in gravel and either given water and nutrients at intervals or the nutrient solution was continuously supplied. Alders continuously supplied with nutrients and water showed a significantly more rapid growth, higher biomass production and higher nitrogen content than did alders given nutrients and water at intervals or alders hydroponically grown. Alders continuously supplied with water and nutrients had a constant RE (relative efficiency of nitrogenase) of about 0.80 throughout the experimental period while alders supplied with water and nutrients at intervals showed a slight decrease in RE at the end of the experimental period. No strict relationship was found between RE and nitrogen content or between RE and plant productivity.  相似文献   

19.
Growth and N, P, K uptake of Acala SJ-2 cotton (Gossypium hirsutum) were investigated in an irrigated permanent-plot field (Typic chromoxerert) at Bet Dagan, Israel, under semi-arid conditions using different nitrogen levels: 0, 60, 120, 180 and 240 kg N ha−1. The total dry matter accumulation at these levels was 9.0, 10.7, 15.1, 17.1 and 15.6 ton ha−1, respectively. The uptake of N, P and K was 110, 144, 267, 322 and 301 kg N ha−1∶31, 34, 46, 44 and 38 kg P ha−1; and 120, 151, 208, 251 and 230 kg K ha−1, respectively. Dry matter production, as well as N, P, K uptake by the cotton plants were greatly increased by raising the N application levels to 120 or 180 kg N ha−1, but the pattern of accumulation and relative distribution of dry matter and NPK among plant organs were not considerably affected. Joint contribution from the Dept. of Soil Chemistry and Plant Nutrition, ARO, the Volcani Center, Bet Dagan, Israel (No. 1413-E, 1985 series)  相似文献   

20.
Leaf senescence and associated changes in redox components were monitored in commercial pea (Pisum sativum L. cv. Phoenix) plants grown under different nitrogen regimes for 12 weeks until both nodules and leaves had fully senesced. One group of plants was inoculated with Rhizobium leguminosarum and grown with nutrient solution without nitrogen. A second group was not inoculated and these were grown on complete nutrient solution containing nitrogen. Leaf senescence was evident at 11 weeks in both sets of plants as determined by decreases in leaf chlorophyll and protein. However, a marked decrease in photosynthesis was observed in nodulated plants at 9 weeks. Losses in the leaf ascorbate pool preceded leaf senescence, but leaf glutathione decreased only during the senescence phase. Large decreases in dehydroascorbate reductase and catalase activities were observed after 9 weeks, but the activities of other antioxidant enzymes remained high even at 11 weeks. The extent of lipid peroxidation, the number of protein carbonyl groups and the level of H(2)O(2) in the leaves of both nitrate-fed and nodulated plants were highest at the later stages of senescence. At 12 weeks, the leaves of nodulated plants had more protein carbonyl groups and greater lipid peroxidation than the nitrate-fed controls. These results demonstrate that the leaves of nodulated plants undergo an earlier inhibition of photosynthesis and suffer enhanced oxidation during the senescence phase than those from nitrate-fed plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号