首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compression on the lumbar spine is 1000 N for standing and walking and is higher during lifting. Ex vivo experiments show it buckles under a vertical load of 80-100 N. Conversely, the whole lumbar spine can support physiologic compressive loads without large displacements when the load is applied along a follower path that approximates the tangent to the curve of the lumbar spine. This study utilized a two-dimensional beam-column model of the lumbar spine in the frontal plane under gravitational and active muscle loads to address the following question: Can trunk muscle activation cause the path of the internal force resultant to approximate the tangent to the spinal curve and allow the lumbar spine to support compressive loads of physiologic magnitudes? The study identified muscle activation patterns that maintained the lumbar spine model under compressive follower load, resulting in the minimization of internal shear forces and bending moments simultaneously at all lumbar levels. The internal force resultant was compressive, and the lumbar spine model, loaded in compression along the follower load path, supported compressive loads of physiologic magnitudes with minimal change in curvature in the frontal plane. Trunk muscles may coactivate to generate a follower load path and allow the ligamentous lumbar spine to support physiologic compressive loads.  相似文献   

2.
Kim K  Kim YH  Lee S 《Journal of biomechanics》2011,44(8):1614-1617
It has been reported that the center of rotation of each vertebral body is located posterior to the vertebral body center. Moreover, it has been suggested that an optimized follower load (FL) acts posterior to the vertebral body center. However, the optimal position of the FL with respect to typical biomechanical characteristics regarding spinal stabilization, such as joint compressive force, shear force, joint moment, and muscle stress, has not been studied. A variation in the center of rotation of each vertebra was formulated in a three-dimensional finite element model of the lumbar spine with 117 pairs of trunk muscles. Then, the optimal translation of the FL path connecting the centers of rotations was estimated by solving the optimization problem that was to simultaneously minimize the compressive forces, the shear forces, and the joint moments or to minimize the cubic muscle stresses. An upright neutral standing position and a standing position with 200N in both hands were considered. The FL path moved posterior, regardless of the optimization criteria and loading conditions. The FL path moved 5.0 and 7.8mm posterior in upright standing and 4.1mm and 7.0mm posterior in standing with 200N in hands for each optimization scheme. In addition, it was presented that the optimal FL path may have advantages in comparison to the body center FL path. The present techniques may be important in understanding the spine stabilization function of the trunk muscles.  相似文献   

3.
A wide range of loading conditions involving external forces with varying magnitudes, orientations and locations are encountered in daily activities. Here we computed the effect on trunk biomechanics of changes in force location (two levels) and orientation (5 values) in 4 subjects in upright standing while maintaining identical external moment of 15 Nm, 30 N m or 45 Nm at the L5–S1. Driven by measured kinematics and gravity/external loads, the finite element models yielded substantially different trunk neuromuscular response with moderate alterations (up to 24% under 45 Nm moment) in spinal loads as the load orientation varied. Under identical moments, compression and shear forces at the L5–S1 as well as forces in extensor thoracic muscles progressively decreased as orientation of external forces varied from downward gravity (90°) all the way to upward (−25°) orientation. In contrast, forces in local lumbar muscles followed reverse trends. Under larger horizontal forces at a lower elevation, lumbar muscles were much more active whereas extensor thoracic muscle forces were greater under smaller forces at a higher elevation. Despite such differences in activity pattern, the spinal forces remained nearly identical (<6% under 45 Nm moment). The published recorded surface EMG data of extensor muscles trend-wise agreed with computed local muscle forces as horizontal load elevation varied but were overall different from results in both local and global muscles when load orientation altered. Predictions demonstrate the marked effect of external force orientation and elevation on the trunk neuromuscular response and spinal forces and questions attempts to estimate spinal loads based only on consideration of moments at a spinal level.  相似文献   

4.
High anterior intervertebral shear loads could cause low back injuries and therefore the neuromuscular system may actively counteract these forces. This study investigated whether, under constant moment loading relative to L3L4, an increased externally applied forward force on the trunk results in a shift in muscle activation towards the use of muscles with more backward directed lines of action, thereby reducing the increase in total joint shear force. Twelve participants isometrically resisted forward forces, applied at several locations on the trunk, while moments were held constant relative to L3L4. Surface EMG and lumbar curvature were measured, and an EMG-driven muscle model was used to calculate compression and shear forces at all lumbar intervertebral joints. Larger externally applied forward forces resulted in a flattening of the lumbar lordosis and a slightly more backward directed muscle force. Furthermore, the overall muscle activation increased. At the T12L1 to L3L4 joint, resulting joint shear forces remained small (less than 200N) because the average muscle force pulled backward relative to those joints. However, at the L5S1 joint the average muscle force pulled the trunk forward so that the increase in muscle force with increasing externally applied forward force caused a further rise in shear force (by 102.1N, SD=104.0N), resulting in a joint shear force of 1080.1N (SD=150.4N) at 50Nm moment loading. It is concluded that the response of the neuromuscular system to shear force challenges tends to increase rather than reduce the shear loading at the lumbar joint that is subjected to the highest shear forces.  相似文献   

5.
Determination of the trunk maximum voluntary exertion moment capacity and associated internal spinal forces could serve in proper selection of workers for specific occupational task requirements, injury prevention and treatment outcome evaluations. Maximum isometric trunk exertion moments in flexion and extension along with surface EMG of select trunk muscles are measured in 12 asymptomatic subjects. Subsequently and under individualized measured harness-subject forces, kinematics and upper trunk gravity, an iterative kinematics-driven finite element model is used to compute muscle forces and spinal loads in 4 of these subjects. Different co-activity and intra-abdominal pressure levels are simulated. Results indicate significantly larger maximal resistant moments and spinal compression/shear forces in extension exertions than flexion exertions. The agonist trunk muscles reach their maximum force generation (saturation) to greater extent in extension exertions compared to flexion exertions. Local lumbar extensor muscles are highly active in extension exertions and generate most of the internal spinal forces. The maximum exertion attempts produce large spinal compression and shear loads that increase with the antagonist co-activity level but decrease with the intra-abdominal pressure. Intra-abdominal pressure decreases agonist muscle forces in extension exertions but generally increase them in flexion exertions.  相似文献   

6.
The aim of the present study was to test the assumption that asymmetric trunk loading requires a higher total muscle force and consequently entails a higher compression forces on the spine as compared to symmetric loading. When the trunk musculature is modelled in sufficient detail, optimisation shows that there is no mechanical necessity for an increase in total muscle force (or compression force) with task asymmetry. A physiologically based optimisation does also not predict an increase in total muscle force or spinal loading with asymmetry. EMG data on 14 trunk muscles collected in eight subjects showed antagonistic coactivity to be present in both conditions. However, estimates of total muscle force based on the EMG were lower when producing an asymmetric moment. In conclusion, producing an asymmetric moment appears to cause slightly lower forces on the lumbosacral joint as compared to a symmetric moment. Only lateral shear forces increase with asymmetry but these remain well below failure levels.  相似文献   

7.
Accurate quantification of the trunk transient response to sudden loading is crucial in prevention, evaluation, rehabilitation and training programs. An iterative dynamic kinematics-driven approach was used to evaluate the temporal variation of trunk muscle forces, internal loads and stability under sudden application of an anterior horizontal load. The input kinematics is hypothesized to embed basic dynamic characteristics of the system that can be decoded by our kinematics-driven approach. The model employs temporal variation of applied load, trunk forward displacement and surface EMG of select muscles measured on two healthy and one chronic low-back pain subjects to a sudden load. A finite element model accounting for measured kinematics, nonlinear passive properties of spine, detailed trunk musculature with wrapping of global extensor muscles, gravity load and trunk biodynamic characteristics is used to estimate the response under measured sudden load. Results demonstrate a delay of ~200 ms in extensor muscle activation in response to sudden loading. Net moment and spinal loads substantially increase as muscles are recruited to control the trunk under sudden load. As a result and due also to the trunk flexion, system stability significantly improves. The reliability of the kinematics-driven approach in estimating the trunk response while decoding measured kinematics is demonstrated. Estimated large spinal loads highlight the risk of injury that likely further increases under larger perturbations, muscle fatigue and longer delays in activation.  相似文献   

8.
Direct quantitative measurement of muscle forces is not possible. Forces in the trunk muscles were estimated for standing and flexion of the upper body using three-dimensional, nonlinear finite element models of the lumbar spine with and without an internal spinal fixation device. Muscle forces assumed were two pairs dorsally and one ventrally, each representing several muscles. Muscle forces in the model with internal fixators were varied in discrete steps until the implant loads calculated closely corresponded to those measured in a patient with an instrumented implant. The calculated angles between adjacent lumbar vertebrae were compared with corresponding values measured on X-ray films of a patient as well as with literature values and served as a second criterion for predicting muscle forces. For the model without an implant, the muscle forces of the first model were slightly varied until the lumbar spine shape and the intradiscal pressure were physiological. The abdomen was shown to have a considerable supporting function for flexion.  相似文献   

9.
Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks.  相似文献   

10.
Evaluation of loads acting on the spine requires the knowledge of the muscular forces acting on it, but muscles redundancy necessitates developing a muscle forces attribution strategy. Optimisation, EMG, or hybrid models allow evaluating muscle force patterns, yielding a unique muscular arrangement or/and requiring EMG data collection. This paper presents a regulation model of the trunk muscles based on a proprioception hypothesis, which searches to avoid the spinal joint overloading. The model is also compared to other existing models for evaluation. Compared to an optimisation model, the proposed alternative muscle pattern yielded a significant spine postero-anterior shear decrease. Compared to a model based on combination of optimisation criteria, present model better fits muscle activation observed using EMG (38% improvement). Such results suggest that the proposed model, based on regulation of all spinal components, may be more relevant from a physiologic point of view.  相似文献   

11.
Understanding load-sharing in the spine during in-vivo conditions is critical for better spinal implant design and testing. Previous studies of load-sharing that considered actual spinal geometry applied compressive follower load, with or without moment, to simulate muscle forces. Other studies used musculoskeletal models, which include muscle forces, but model the discs by simple beams or spherical joints and ignore the articular facet joints.This study investigated load-sharing in neutral standing and flexed postures using a detailed Finite Element (FE) model of the ligamentous lumbosacral spine, where muscle forces, gravity loads and intra-abdominal pressure, as predicted by a musculoskeletal model of the upper body, are input into the FE model. Flexion was simulated by applying vertebral rotations following spine rhythm measured in a previous in-vivo study, to the musculoskeletal model. The FE model predicted intradiscal pressure (IDP), strains in the annular fibers, contact forces in the facet joints, and forces in the ligaments. The disc forces and moments were determined using equilibrium equations, which considered the applied loads, including muscle forces and IDP, as well as forces in the ligaments and facet joints predicted by the FE model. Load-sharing was calculated as the portion of the total spinal load carried along the spine by each individual spinal structure. The results revealed that spinal loads which increased substantially from the upright to the flexed posture were mainly supported by the discs in the upright posture, whereas the ligaments’ contribution in resisting shear, compression, and moment was more significant in the flexed posture.  相似文献   

12.
Previous in-vivo studies suggest that the ratio of total lumbar rotation over pelvic rotation (lumbo-pelvic rhythm) during trunk sagittal movement is essential to evaluate spinal loads and discriminate between low back pain and asymptomatic population. Similarly, there is also evidence that the lumbo-pelvic rhythm is key for evaluation of realistic muscle and joint reaction forces and moments predicted by various computational musculoskeletal models. This study investigated the effects of three lumbo-pelvic rhythms defined based on in-vivo measurements on the spinal response during moderate forward flexion (60°) using a combined approach of musculoskeletal modeling of the upper body and finite element model of the lumbosacral spine. The muscle forces and joint loads predicted by the musculoskeletal model, together with the gravitational forces, were applied to the finite element model to compute the disc force and moment, intradiscal pressure, annular fibers strain, and load-sharing. The results revealed that a rhythm with high pelvic rotation and low lumbar flexion involves more global muscles and increases the role of the disc in resisting spinal loads, while its counterpart, with low pelvic rotation, recruits more local muscles and engages the ligaments to lower the disc loads. On the other hand, a normal rhythm that has balanced pelvic and lumbar rotations yields almost equal disc and ligament load-sharing and results in more balanced synergy between global and local muscles. The lumbo-pelvic rhythm has less effect on the intradiscal pressure and annular fibers strain. This work demonstrated that the spinal response during forward flexion is highly dependent on the lumbo-pelvic rhythm. It is therefore, essential to adapt this parameter instead of using the default values in musculoskeletal models for accurate prediction of muscle forces and joint reaction forces and moments. The findings provided by this work are expected to improve knowledge of spinal response during forward flexion, and are clinically relevant towards low back pain treatment and disc injury prevention.  相似文献   

13.
14.
The purpose of this research was to investigate the contributions of individual muscles to joint rotational stiffness and total joint rotational stiffness about the lumbar spine’s L4–5 joint prior to, and following, sudden dynamic lateral perturbations to the trunk. Kinematic and surface EMG data were collected while subjects maintained a kneeling posture on a robotic platform, while restrained so that motions caused by the perturbation were transferred to the pelvis, causing motion of the trunk and head. The robotic platform caused sudden inertial trunk lateral perturbations to the right or left, with or without timing and direction knowledge. An EMG-driven model of the lumbar spine was used to calculate the muscle forces and contributions to joint rotational stiffness during the perturbations. Data showed 95% and 106% increases in total joint rotational stiffness, about the lateral bend and axial twist axes, when subjects had knowledge of the timing of the perturbation. Also, the contralateral muscles exhibited a significantly larger total joint rotational stiffness about the lateral bend axis, and earlier surface EMG responses, than the ipsilateral muscles. The results indicate that, when the timing of the perturbation was unknown, subjects relied more on delayed muscle forces following the perturbation to stiffen the L4–5 joint.  相似文献   

15.
Mechanical loading of the low back during lifting is a common cause of low back pain. In this study two-handed lifting is compared to one-handed lifting (with and without supporting the upper body with the free hand) while lifting over an obstacle. A 3-D linked segment model was combined with an EMG-assisted trunk muscle model to quantify kinematics and joint loads at the L5S1 joint. Peak total net moments (i.e., the net moment effect of all muscles and soft tissue spanning the joint) were found to be 10+/-3% lower in unsupported one-handed lifting compared to two-handed lifting, and 30+/-8% lower in supported compared to unsupported one-handed lifting. L5S1 joint forces also showed reductions, but not of the same magnitude (18+/-8% and 15+/-10%, respectively, for compression forces, and 15+/-17% and 11+/-14% respectively, for shear forces). Those reductions of low back load were mainly caused by a reduction of trunk and load moment arms relative to the L5S1 joint during peak loading, and, in the case of hand support, by a support force of about 250 N. Stretching one leg backward did not further reduce low back load estimates. Furthermore, one-handed lifting caused an 6+/-8 degrees increase in lateral flexion, a 9+/-5 degrees increase in twist and a 6+/-6 degrees decrease in flexion. Support with the free hand caused a small further increase in lumbar twisting. It is concluded that one-handed lifting, especially with hand support, reduces L5S1 loading but increases asymmetry in movements and moments about the lumbar spine.  相似文献   

16.
Larger trunk and pelvic motions in persons with (vs. without) lower limb amputation during activities of daily living (ADLs) adversely affect the mechanical demands on the lower back. Building on evidence that such altered motions result in larger spinal loads during level-ground walking, here we characterize trunk-pelvic motions, trunk muscle forces, and resultant spinal loads among sixteen males with unilateral, transfemoral amputation (TFA) walking at a self-selected speed both up (“upslope”; 1.06 ± 0.14 m/s) and down (“downslope”; 0.98 ± 0.20 m/s) a 10-degree ramp. Tri-planar trunk and pelvic motions were obtained (and ranges-of-motion [ROM] computed) as inputs for a non-linear finite element model of the spine to estimate global and local muscle (i.e., trunk movers and stabilizers, respectively) forces, and resultant spinal loads. Sagittal- (p = 0.001), frontal- (p = 0.004), and transverse-plane (p < 0.001) trunk ROM, and peak mediolateral shear (p = 0.011) and local muscle forces (p = 0.010) were larger (respectively 45, 35, 98, 70, and 11%) in upslope vs. downslope walking. Peak anteroposterior shear (p = 0.33), compression (p = 0.28), and global muscle (p = 0.35) forces were similar between inclinations. Compared to previous reports of persons with TFA walking on level ground, 5–60% larger anteroposterior and mediolateral shear observed here (despite ∼0.25 m/s slower walking speeds) suggest greater mechanical demands on the low back in sloped walking, particularly upslope. Continued characterization of trunk motions and spinal loads during ADLs support the notion that repeated exposures to these larger-than-normal (i.e., vs. level-ground walking in TFA and uninjured cohorts) spinal loads contribute to an increased risk for low back injury following lower limb amputation.  相似文献   

17.
The spinal stability and passive-active load partitioning under dynamic squat and stoop lifts were investigated as the ligamentous stiffness in flexion was altered. Measured in vivo kinematics of subjects lifting 180 N at either squat or stoop technique was prescribed in a nonlinear transient finite element model of the spine. The Kinematics-driven approach was utilized for temporal estimation of muscle forces, internal spinal loads and system stability. The finite element model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles and trunk dynamic characteristics while subject to measured kinematics and gravity/external loads. Alterations in passive properties of spine substantially influenced muscle forces, spinal loads and system stability in both lifting techniques, though more so in stoop than in squat. The squat technique is advocated for resulting in smaller spinal loads. Stability of spine in the sagittal plane substantially improved with greater passive properties, trunk flexion and load. Simulation of global extensor muscles with curved rather than straight courses considerably diminished loads on spine and increased stability throughout the task.  相似文献   

18.
People with a history of low back pain (LBP) are at high risk to encounter additional LBP episodes. During LBP remission, altered trunk muscle control has been suggested to negatively impact spinal health. As sudden LBP onset is commonly reported during trunk flexion, the aim of the current study is to investigate whether dynamic trunk muscle recruitment is altered in LBP remission. Eleven people in remission of recurrent LBP and 14 pain free controls performed cued trunk flexion during a loaded and unloaded condition. Electromyographic activity was recorded from paraspinal (lumbar and thoracic erector spinae, latissimus dorsi, deep and superficial multifidus) and abdominal muscles (obliquus internus, externus and rectus abdominis) with surface and fine-wire electrodes. LBP participants exhibited higher levels of co-contraction of flexor/extensor muscles, lower agonistic abdominal and higher antagonistic paraspinal muscle activity than controls, both when data were analyzed in grouped and individual muscle behavior. A sub-analysis in people with unilateral LBP (n = 6) pointed to opposing changes in deep and superficial multifidus in relation to the pain side. These results suggest that dynamic trunk muscle control is modified during LBP remission, and might possibly increase spinal load and result in earlier muscle fatigue due to intensified muscle usage. These negative consequences for spinal health could possibly contribute to recurrence of LBP.  相似文献   

19.
Abstract

The current paper aims at assessing the sensitivity of muscle and intervertebral disc force computations against potential errors in modeling muscle attachment sites. We perturbed each attachment location in a complete and coherent musculoskeletal model of the human spine and quantified the changes in muscle and disc forces during standing upright, flexion, lateral bending, and axial rotation of the trunk. Although the majority of the muscles caused minor changes (less than 5%) in the disc forces, certain muscle groups, for example, quadratus lumborum, altered the shear and compressive forces as high as 353% and 17%, respectively. Furthermore, percent changes were higher in the shear forces than in the compressive forces. Our analyses identified certain muscles in the rib cage (intercostales interni and intercostales externi) and lumbar spine (quadratus lumborum and longissimus thoracis) as being more influential for computing muscle and disc forces. Furthermore, the disc forces at the L4/L5 joint were the most sensitive against muscle attachment sites, followed by T6/T7 and T12/L1 joints. Presented findings suggest that modeling muscle attachment sites based on solely anatomical illustrations might lead to erroneous evaluation of internal forces and promote using anatomical datasets where these locations were accurately measured. When developing a personalized model of the spine, certain care should also be paid especially for the muscles indicated in this work.  相似文献   

20.
During level walking, lumbar spine is subjected to cyclic movements and intricate loading of the spinal discs and trunk musculature. This study aimed to estimate the spinal loads (T12–S1) and trunk muscles forces during a complete gait cycle.Six men, 24–33 years walk barefoot at self-selected speed (4–5 km/h). 3D kinematics and ground reaction forces were recorded using a motion capturing system and two force plates, implemented in an inverse dynamic musculoskeletal model to predict the spinal loads and trunk muscles forces. Additionally, the sensitivity of the intra-abdominal pressure and lumbar segment rotational stiffness was investigated.Peak spinal loads and trunk muscle forces were between the gait instances of heel strike and toe off. In L4–L5 segment, sensitivity analysis showed that average peak compressive, antero-posterior and medio-lateral shear forces were 130–179%, 2–15% and 1–6%, with max standard deviation (±STD) of 40%, 6% and 3% of the body weight. Average peak global muscles forces were 24–55% (longissimus thoracis), 11–23% (iliocostalis thoracis), 12–16% (external oblique), 17–25% (internal oblique) and 0–8% (rectus abdominus) of body weight whereas, the average peak local muscles forces were 11–19% (longissimus lumborum), 14–31% (iliocostalis lumborum) and 12–17% (multifidus). Maximum ± STD of the global and local muscles forces were 13% and 8% of the body weight.Large inter-individual differences were found in peak compressive and trunk muscles forces whereas the sensitivity analysis also showed a substantial variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号