首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The knee is often a site of injury that can often lead to a chronic disease known as osteoarthritis (OA). The disease may be initiated, in part, by acute injuries to joint cartilage and its cells. In a recent study by this laboratory, using Flemish Giant rabbits, an impact compressive load on the tibial femoral joint was shown to cause significant levels of acute damage to chondrocytes in cartilage of the medial and lateral tibial plateaus. In the current study, using the same model, histological and mechanical data from the plateaus were documented at 6 and 12 months post impact, and compared to the unimpacted control limbs and a limb from unimpacted, control animals. The mechanical properties of cartilage were measured with indentation relaxation tests on the medial and lateral plateaus in regions covered and uncovered by the meniscus. The histological studies on impacted limbs showed surface lesions on both plateaus, thickening of the underlying subchondral bone at 12 months and numerous occult microcracks at the calcified cartilage–subchondral bone interface at 6 and 12 months, without significant changes in cartilage thickness or its mechanical properties versus controls. Yet, there was an increase in both the matrix and fiber moduli and a decrease in the permeability of uncovered, medial plateau cartilage in both limbs of impacted animals between 6 and 12 months post impact that was not documented in control animals.  相似文献   

2.
Articular cartilage and its supporting bone functional conditions are tightly coupled as injuries of either adversely affects joint mechanical environment. The objective of this study was set to quantitatively investigate the extent of alterations in the mechanical environment of cartilage and knee joint in presence of commonly observed osteochondral defects. An existing validated finite element model of a knee joint was used to construct a refined model of the tibial lateral compartment including proximal tibial bony structures. The response was computed under compression forces up to 2000 N while simulating localized bone damage, cartilage–bone horizontal split, bone overgrowth and absence of deep vertical collagen fibrils.Localized tibial bone damage increased overall joint compliance and substantially altered pattern and magnitude of contact pressures and cartilage strains in both tibia and femur. These alterations were further exacerbated when bone damage was combined with base cartilage split and absence of deep vertical collagen fibrils. Local bone boss markedly changed contact pressures and strain patterns in neighbouring cartilage. Bone bruise/fracture and overgrowth adversely perturbed the homeostatic balance in the mechanical environment of articulate cartilage surrounding and opposing the lesion as well as the joint compliance. As such, they potentially contribute to the initiation and development of post-traumatic osteoarthritis.  相似文献   

3.
Results of both clinical and animal studies show that meniscectomy often leads to osteoarthritic degenerative changes in articular cartilage. It is generally assumed that this process of cartilage degeneration is due to changes in mechanical loading after meniscectomy. It is, however, not known why and where this cartilage degeneration starts. Load induced cartilage damage is characterized as either type (1)--damage without disruption of the underlying bone or calcified cartilage layer--or type (2), subchondral fracture with or without damage to the overlying cartilage. We asked the question whether cartilage degeneration after meniscectomy is likely to be initiated by type (1) and/or type (2) cartilage damage. To investigate that we applied an axisymmetric biphasic finite element analysis model of the knee joint. In this model the articular cartilage layers of the tibial and the femoral condyles, the meniscus and the bone underlying the articular cartilage of the tibia plateau were included. The model was validated with data from clinical studies, in which the effects of meniscectomy on contact areas and pressures were measured. It was found that both the maximal values and the distributions of the shear stress in the articular cartilage changed after meniscectomy, and that these changes could lead to both type (1) and type (2) cartilage damage. Hence it likely that the cartilage degeneration seen after meniscectomy is initiated by both type (1) and type (2) cartilage damage.  相似文献   

4.
The mechanical environment is an important factor affecting the maintenance and adaptation of articular cartilage, and thus the function of the joint and the progression of joint degeneration. Recent evidence suggests that cartilage deformation caused by mechanical loading is directly associated with deformation and volume changes of chondrocytes. Furthermore, in vitro experiments have shown that these changes in the mechanical states of chondrocytes correlate with a change in the biosynthetic activity of cartilage cells. The purpose of this study was to apply our knowledge of contact forces within the feline patellofemoral joint to quantify chondrocyte deformation in situ under loads of physiological magnitude. A uniform, static load of physiological magnitude was applied to healthy articular cartilage still fully intact and attached to its native bone. The compressed cartilage was then chemically fixed to enable the evaluation of cartilage strain, chondrocyte deformation and chondrocyte volumetric fraction. Patella and femoral groove articular cartilages differ in thickness, chondrocyte aspect ratio, and chondrocyte volumetric fraction in both magnitude and depth distribution. Furthermore, when subjected to the same compressive loads, changes to all of these parameters differ in magnitude and depth distribution between patellar and femoral groove articular cartilage. This evidence suggests that significant chondrocyte deformation likely occurs during in vivo joint loading, and may influence chondrocyte biosynthetic activity. Furthermore, we hypothesise that the contrasts between patella and femoral groove cartilages may explain, in part, the site-specific progression of osteoarthritis in the patellofemoral joint of the feline anterior cruciate ligament transected knee.  相似文献   

5.
Cadaver models of contact pressure aberration near displaced intra-articular fractures complement clinical experience, but inter-specimen variability often complicates interpretation of in vitro data. A contact finite element formulation is here used to study juxta-articular stress distributions in a plane strain model of tibial plateau step-off incongruity. Attention is focused on the influence of global morphologic parameters: intact joint surface curvatures, cartilage thickness, and cartilage stiffness. The computed stress distributions agreed well with experimental recordings for a typical 3 mm incongruity in an otherwise normal joint. Both decreased cartilage thickness and increased cartilage modulus led to elevations in the peak local contact stress, and to concentration of contact stress near the edge of the step-off incongruity. Similar effects were seen when reduction of global joint congruency was modelled by decreasing the concavity of the tibial plateau. While the observed degree of coupling between global morphology and local stress aberration was by no means negligible, the sensitivity of the stresses to variations in individual parameters was relatively mild. This suggests that the finite element results will be useful for experimental data interpretation.  相似文献   

6.
The current study describes the development of a small animal, closed-joint model of traumatic anterior cruciate ligament (ACL) and meniscal rupture. This model can be used in future studies to investigate the roles of these acute damages on the long-term health of an injured knee joint. Forty-two Flemish Giant rabbits received an insult to the left tibiofemoral joint ex vivo in order to document optimal energy and joint orientation needed to generate ACL and meniscal rupture, without gross fracture of bone. Impact energies ranged from 10 J to 22 J, and joint flexion angle ranged from 60 deg to 90 deg. Three in vivo animals were impacted at 13 J with the knee flexed at 90 deg, as this was determined to be the optimal load and joint orientation for ACL and meniscal ruptures, and sacrificed at 12 weeks. Impact data from the ex vivo group revealed that 13 J of dropped-mass energy, generating approximately 1100 N of load on the knee, would cause ACL and meniscal ruptures, without gross bone fracture. Acute damage to the lateral and medial menisci was documented in numerous ex vivo specimens, with isolated lateral meniscal tears being more frequent than isolated medial tears in other cases. The in vivo animals showed no signs of ill health or other physical complications. At 12 week post-trauma these animals displayed marked degeneration of the traumatized joint including synovitis, cartilage erosion, and the formation of peripheral osteophytes. Histological microcracks at the calcified cartilage-subchondral bone interface were also evident in histological sections of these animals. A closed-joint model of traumatic ACL and meniscal rupture was produced, without gross bone fracture, and a pilot, in vivo study showed progressive joint degeneration without any other noticeable physical impairments of the animals over 12 weeks. This closed-joint, traumatic injury model may be useful in future experimental studies of joint disease and various intervention strategies.  相似文献   

7.
Modern computerized planning tools for periacetabular osteotomy (PAO) use either morphology-based or biomechanics-based methods. The latter relies on estimation of peak contact pressures and contact areas using either patient specific or constant thickness cartilage models. We performed a finite element analysis investigating the optimal reorientation of the acetabulum in PAO surgery based on simulated joint contact pressures and contact areas using patient specific cartilage model. Furthermore we investigated the influences of using patient specific cartilage model or constant thickness cartilage model on the biomechanical simulation results. Ten specimens with hip dysplasia were used in this study. Image data were available from CT arthrography studies. Bone models were reconstructed. Mesh models for the patient specific cartilage were defined and subsequently loaded under previously reported boundary and loading conditions. Peak contact pressures and contact areas were estimated in the original position. Afterwards we used a validated preoperative planning software to change the acetabular inclination by an increment of 5° and measured the lateral center edge angle (LCE) at each reorientation position. The position with the largest contact area and the lowest peak contact pressure was defined as the optimal position. In order to investigate the influence of using patient specific cartilage model or constant thickness cartilage model on the biomechanical simulation results, the same procedure was repeated with the same bone models but with a cartilage mesh of constant thickness. Comparison of the peak contact pressures and the contact areas between these two different cartilage models showed that good correlation between these two cartilage models for peak contact pressures (r = 0.634 ∈ [0.6, 0.8], p < 0.001) and contact areas (r = 0.872 > 0.8, p < 0.001). For both cartilage models, the largest contact areas and the lowest peak pressures were found at the same position. Our study is the first study comparing peak contact pressures and contact areas between patient specific and constant thickness cartilage models during PAO planning. Good correlation for these two models was detected. Computer assisted planning with FE modeling using constant thickness cartilage models might be a promising PAO planning tool when a conventional CT is available.  相似文献   

8.
Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodelling. Under physiologic conditions, articular cartilage displays a stable chondrocyte phenotype, whereas in osteoarthritis a chondrocyte hypertrophy develops near the sites of cartilage surface damage and associates to the pathologic expression of type X collagen. Transglutaminases (TGs) include a family of Ca2+-dependent enzymes that catalyze the formation of γ-glutamyl cross-links. Their substrates include a variety of intracellular and extracellular macromolecular components. TGs are ubiquitously and abundantly expressed and implicated in a variety of physiopathological processes. TGs activity is modulated by inflammatory cytokines. TG2 (also known as tissue transglutaminase) mediates the hypertrophic differentiation of joint chondrocytes and interleukin-1-induced calcification. Histomorphometrical and biomolecular investigations document increased TG2 expression in human and experimental osteoarthritis. Consequently, the level of TG2 expression may represent an adjuvant additional marker to monitor tissue remodelling occurring in osteoarthritic joint tissue. Experimental induction of osteoarthritis in TG2 knockout mice is followed from reduced cartilage destruction and increased osteophyte formation compared to wild-type mice, suggesting a different influence on joint bone and cartilage remodelling. The capacity of transamidation by TG2 to regulate activation of latent TGF-β seems to have a potential impact on the regulation of inflammatory response in osteoarthritic tissues. Additional studies are needed to define TG2-regulated pathways that are differently modulated in osteoblasts and chondrocytes during osteoarthritis.  相似文献   

9.
Post-traumatic overgrowth of growing long bones is a common clinical phenomenon in paediatric traumatology and is the result of an enhanced stimulation of the nearby growth plate after fracture. To date, the exact post-fractural reactions of the growth plate are poorly understood. The aim of this study has been to determine the impact of fracture on the frequency of chondrocyte apoptosis of the growth plate. Rats sustained a mid-diaphyseal closed fracture of the left tibia or were left untreated. All animals were killed 3, 10, 14 or 29 days after trauma. The left and right tibiae were harvested and apoptotic chondrocytes of the proximal tibial growth plate were detected by TUNEL staining. The apoptosis percentage of physeal chondrocytes was statistically compared among fractured bones, intact contra-lateral bones and control bones. The physeal apoptosis rate of the fractured bone was significantly higher than that of the contra-lateral intact bone (valid for all evaluated days) and the control bone (valid from day 10 onwards). Contra-lateral intact tibiae never showed significantly higher apoptosis rates compared with control tibiae. Thus, mid-diaphyseal fracture influences the nearby growth plate by stimulating chondrocyte programmed cell death, which is associated with cartilage resorption and bone replacement. The lack of a significant difference between the intact contra-lateral and the intact control bone suggests that fracture only has a local effect that contributes to the greater apoptosis rate of the adjacent physis.  相似文献   

10.
Stress analysis of contact models for isotropic articular cartilage under impacting loads shows high shear stresses at the interface with the subchondral bone and normal compressive stresses near the surface of the cartilage. These stress distributions are not consistent, with lesions observed on the cartilage surface of rabbit patellae from blunt impact, for example, to the patello-femoral joint. The purpose of the present study was to analyze, using the elastic capabilities of a finite element code, the stress distribution in more morphologically realistic transversely isotropic biphasic contact models of cartilage. The elastic properties of an incompressible material, equivalent to those of the transversely isotropic biphasic material at time zero, were derived algebraically using stress-strain relations. Results of the stress analysis showed the highest shear stresses on the surface of the solid skeleton of the cartilage and tensile stresses in the zone of contact. These results can help explain the mechanisms responsible for surface injuries observed during blunt insult experiments.  相似文献   

11.
Endochondral ossification in growth plates proceeds through several consecutive steps of late cartilage differentiation leading to chondrocyte hypertrophy, vascular invasion, and, eventually, to replacement of the tissue by bone. The subchondral vascular system is essential for this process and late chondrocyte differentiation is subject to negative control at several checkpoints. Endothelial cells of subchondral blood vessels not only are the source of vascular invasion accompanying the transition of hypertrophic cartilage to bone but also produce factors overruling autocrine barriers against late chondrocyte differentiation. Here, we have determined that the action of proteases secreted by endothelial cells were sufficient to derepress the production of the hypertrophy-markers collagen X and alkaline phosphatase in arrested populations of chicken chondrocytes. Signalling by thyroid hormones was also necessary but endothelial factors other than proteinases were not. Negative signalling by PTH/PTHrP- or TGF-beta-receptors remained unaffected by the endothelial proteases whereas signalling by FGF-2 did not suppress, but rather activated late chondrocyte differentiation under these conditions. A finely tuned balance between chondrocyte-derived signals repressing cartilage maturation and endothelial signals promoting late differentiation of chondrocytes is essential for normal endochondral ossification during development, growth, and repair of bone. A dysregulation of this balance in permanent joint cartilage also may be responsible for the initiation of pathological cartilage degeneration in joint diseases.  相似文献   

12.
Recent studies have shown that thinning of human cartilage occurs with unloading, but no data are available on the effect of remobilization (after immobilization) on knee joint cartilage status in humans. We examined a 36-year-old patient after 6 weeks of unilateral immobilization. Knee joint cartilage morphology (patella and tibia), patellar cartilage deformation, and thigh muscle cross-sectional areas were assessed with quantitative MR imaging and bone density with peripheral quantitative computed tomography (pQCT) during 24 months of remobilization. The immobilized limb displayed lower muscle cross-sectional areas (MCSA) of the knee extensors (-36%), lower bone density of the femur and tibia (-12/-6%), lower patellar cartilage thickness (-14%), but no side differences of tibial cartilage thickness. During remobilization, side differences decreased to -4% for knee extensor MCSAs, to -6%/-3% for femoral and tibial BMD, and to -8% for patellar cartilage thickness. No change was observed in tibial cartilage. Patellar deformation decreased from 9% to 4% after 15 months. In conclusion, we observed substantial changes of thigh MCSAs, but little (patella) to no (tibia) change in cartilage thickness during remobilization. These preliminary results indicate that human cartilage macro-morphology may be less adaptive to variations of the mechanical loading than muscle and bone.  相似文献   

13.
Chemotherapy often induces bone growth defects in pediatric cancer patients; yet the underlying cellular mechanisms remain unclear and currently no preventative treatments are available. Using an acute chemotherapy model in young rats with the commonly used antimetabolite methotrexate (MTX), this study investigated damaging effects of five once-daily MTX injections and potential protective effects of supplementary treatment with antidote folinic acid (FA) on cellular activities in the tibial growth plate, metaphysis, and bone marrow. MTX suppressed proliferation and induced apoptosis of chondrocytes, and reduced collagen-II expression and growth plate thickness. It reduced production of primary spongiosa bone, volume of secondary spongiosa bone, and proliferation of metaphyseal osteoblasts, preosteoblasts and bone marrow stromal cells, with the cellular activities being most severely damaged on day 9 and returning to or towards near normal levels by day 14. On the other hand, proliferation of marrow pericytes was increased early after MTX treatment and during repair. FA supplementation significantly suppressed chondrocyte apoptosis, preserved chondrocyte proliferation and expression of collagen-II, and attenuated damaging effects on production of calcified cartilage and primary bone. The supplementation also significantly reduced MTX effects on proliferation of metaphyseal osteoblastic cells and of bone marrow stromal cells, and enhanced pericyte proliferation. These observations suggest that FA supplementation effectively attenuates MTX damage on cellular activities in producing calcified cartilage and primary trabecular bone and on pools of osteoblastic cells and marrow stromal cells, and that it enhances proliferation of mesenchymal progenitor cells during bone/bone marrow recovery.  相似文献   

14.
Osteoarthritis is characterized by many factors, including proteoglycan loss, decreased collagen stiffness, and increased cartilage hydration. Chondrocyte swelling also occurs, and correlates with the degree of osteoarthritis, however, the cause is unknown but might be related to alterations to their passive osmotic properties. We have used two-photon confocal laser scanning microscopy to measure the passive osmotic characteristics of in situ chondrocytes within relatively non-degenerate and degenerate human tibial plateau cartilage, and in chondrocytes isolated from relatively non-degenerate cartilage. Explants with bone attached were taken from a total of 42 patients undergoing arthroplasty and graded macroscopically and microscopically into two groups, grade 0 + 1 and grade 2 + 3. There was a significant increase in cartilage hydration between these two groups (P < 0.05), however, there was no change when medium osmolarity was varied over approximately 0-480 mOsm. The passive osmotic behavior of in situ chondrocytes (at 4 degrees C) was identical over a range of culture medium osmolarities ( approximately 0-515 mOsm), however, the maximum swelling of cells within degenerate cartilage and isolated chondrocytes was greater compared to those in non-degenerate cartilage. The swelling in the majority of in situ chondrocytes was accounted for by the reduced interstitial osmolarity occurring with cartilage degeneration. There was, however, a small population of in situ chondrocytes whose volume was in excess (>/=2,500 microm(3)) of that predicted from the decreased interstitial osmotic pressure. These results show that for the majority of cells studied, the differences in passive chondrocyte volume between relatively non-degenerate, degenerate, and isolated cells were entirely accounted for by changes to the extracellular osmolarity (180-515 mOsm).  相似文献   

15.
Temporomandibular joint (TMJ) osteoarthritis is a common chronic degenerative disease of the TMJ. In order to explore its aetiology and pathological mechanism, many animal models and cell models have been constructed to simulate the pathological process of TMJ osteoarthritis. The main pathological features of TMJ osteoarthritis include chondrocyte death, extracellular matrix (ECM) degradation and subchondral bone remodelling. Chondrocyte apoptosis accelerates the destruction of cartilage. However, autophagy has a protective effect on condylar chondrocytes. Degradation of ECM not only changes the properties of cartilage but also affects the phenotype of chondrocytes. The loss of subchondral bone in the early stages of TMJ osteoarthritis plays an aetiological role in the onset of osteoarthritis. In recent years, increasing evidence has suggested that chondrocyte hypertrophy and endochondral angiogenesis promote TMJ osteoarthritis. Hypertrophic chondrocytes secrete many factors that promote cartilage degeneration. These chondrocytes can further differentiate into osteoblasts and osteocytes and accelerate cartilage ossification. Intrachondral angiogenesis and neoneurogenesis are considered to be important triggers of arthralgia in TMJ osteoarthritis. Many molecular signalling pathways in endochondral osteogenesis are responsible for TMJ osteoarthritis. These latest discoveries in TMJ osteoarthritis have further enhanced the understanding of this disease and contributed to the development of molecular therapies. This paper summarizes recent cognition on the pathogenesis of TMJ osteoarthritis, focusing on the role of chondrocyte hypertrophy degeneration and cartilage angiogenesis.  相似文献   

16.
Anterior tibial loading is a major factor involved in the anterior cruciate ligament (ACL) injury mechanism during ski impact landing. We sought to investigate the direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact of intact knee joints without quadriceps activation. Twelve porcine knee specimens were procured. Four specimens were used as non-impact control while the remaining eight were mounted onto a material-testing system at 70° flexion and subjected to simulated landing impact, which was successively repeated with incremental actuator displacement. Four specimens from the impacted group underwent pre-impact MRI for tibial plateau angle measurements while the other four were subjected to histology and microCT for cartilage morphology and volume assessment. The tibial plateau angles ranged from 29.4 to 38.8°. There was a moderate linear relationship (Y=0.16X; R2=0.64; p<0.001) between peak axial impact compressive load (Y) and peak anterior tibial load (X). The anterior and posterior regions in the impacted group sustained surface cartilage fraying, superficial clefts and tidemark disruption, compared to the control group. MicroCT scans displayed visible cartilage deformation for both anterior and posterior regions in the impacted group. Due to the tibial plateau angle, increased axial impact compressive load can directly elevate anterior tibial load and hence contribute to ACL failure during simulated landing impact. Axial impact compressive load resulted in shear cartilage damage along anterior–posterior tibial plateau regions, due to its contribution to anterior tibial loading. This mechanism plays an important role in elevating ACL stress and cartilage deformation during impact landing.  相似文献   

17.
Despite significant advances in scaffold design, manufacture, and development, it remains unclear what forces these scaffolds must withstand when implanted into the heavily loaded environment of the knee joint. The objective of this study was to fully quantify the dynamic contact mechanics across the tibial plateau of the human knee joint during gait and stair climbing. Our model consisted of a modified Stanmore knee simulator (to apply multi-directional dynamic forces), a two-camera motion capture system (to record joint kinematics), an electronic sensor (to record contact stresses on the tibial plateau), and a suite of post-processing algorithms. During gait, peak contact stresses on the medial plateau occurred in areas of cartilage–cartilage contact; while during stair climb, peak contact stresses were located in the posterior aspect of the plateau, under the meniscus. On the lateral plateau, during gait and in early stair-climb, peak contact stresses occurred under the meniscus, while in late stair-climb, peak contact stresses were experienced in the zone of cartilage–cartilage contact. At 45% of the gait cycle, and 20% and 48% of the stair-climb cycle, peak stresses were simultaneously experienced on both the medial and lateral compartment, suggesting that these phases of loading warrant particular consideration in any simulation intended to evaluate scaffold performance. Our study suggests that in order to design a scaffold capable of restoring ‘normal’ contact mechanics to the injured knees, the mechanics of the intended site of implantation should be taken into account in any pre-clinical testing regime.  相似文献   

18.
Osteoarthritis is characterized by a progressive degradation of articular cartilage leading to loss of joint function. The molecular mechanisms regulating pathogenesis and progression of osteoarthritis are poorly understood. Remarkably, some characteristics of this joint disease resemble chondrocyte differentiation processes during skeletal development by endochondral ossification. In healthy articular cartilage, chondrocytes resist proliferation and terminal differentiation. By contrast, chondrocytes in diseased cartilage progressively proliferate and develop hypertrophy. Moreover, vascularization and focal calcification of joint cartilage are initiated. Signaling molecules that regulate chondrocyte activities in both growth cartilage and permanent articular cartilage during osteoarthritis are thus interesting targets for disease-modifying osteoarthritis therapies.  相似文献   

19.
Endochondral ossification in growth plates proceeds through several consecutive steps of late cartilage differentiation leading to chondrocyte hypertrophy, vascular invasion, and, eventually, to replacement of the tissue by bone. It is well established that the subchondral vascular system is pivotal in the regulation of this process. Cells of subchondral blood vessels act as a source of vascular invasion and, in addition, release factors influencing growth and differentiation of chondrocytes in the avascular growth plate. To elucidate the paracrine contribution of endothelial cells we studied the hypertrophic development of resting chondrocytes from the caudal third of chick embryo sterna in co-culture with endothelial cells. The design of the experiments prevented cell-to-cell contact but allowed paracrine communication between endothelial cells and chondrocytes. Under these conditions, chondrocytes rapidly became hypertrophiedin vitroand expressed the stage-specific markers collagen X and alkaline phosphatase. This development also required signaling by thyroid hormone in synergy. Conditioned media could replace the endothelial cells, indicating that diffusible factors mediated this process. By contrast, smooth muscle cells, fibroblasts, or hypertrophic chondrocytes did not secrete this activity, suggesting that the factors were specific for endothelial cells. We conclude that endochondral ossification is under the control of a mutual communication between chondrocytes and endothelial cells. A finely tuned balance between chondrocyte-derived signals repressing cartilage maturation and endothelial signals promoting late differentiation of chondrocytes is essential for normal endochondral ossification during development, growth, and repair of bone. A dysregulation of this balance in permanent joint cartilage also may be responsible for the initiation of pathological cartilage degeneration in joint diseases.  相似文献   

20.
Spontaneous cartilage degeneration of the femorotibial joint of male Hartley guinea pigs, 61 to 365 days old, was studied by light microscopy (LM) and scanning electron microscopy (SEM) to determine the incidence, age at onset, and to characterize the early changes. Knee joints of 61 day old animals were histologically and ultrastructurally normal. Focal minimal degeneration characterized by cell and proteoglycan loss with surface fibrillation was first observed by LM on the medial tibial plateau (MTP) in two of five 89 day old animals. Mild lesions characterized by focal surface disruption, primarily in the area of medial tibial plateau not covered by the meniscus, were observed in three of five 89 day old animals by SEM. Light microscopic alterations in knee joints of 4, 5, and 6 month old animals consisted of varying degrees of focal chondrocyte death, decreased toluidine blue matrix staining, and surface fibrillation. Small chondrocytic clones were first observed in medial tibial cartilage of 6 month old animals with moderate focal degeneration. Ultrastructurally, 4, 5, and 6 month old animals generally had moderate to severe fibrillation involving primarily the area of the medial tibial plateau not covered by the meniscus. Tibial osteophyte formation, mild synovial hyperplasia, medial femoral and meniscal cartilage degeneration, were first seen by LM in 9 month old animals. Lesions in 1 year old animals were similar, but more severe and included subchondral sclerosis of medial tibial and femoral bone. Bilateral fibrillation of greater than 50% of the medial tibial articular surface was observed in all 1 year old animals by SEM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号