首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first objective of this study was to experimentally determine surface bone strain magnitudes and directions at the donor site for bone grafts, the site predisposed to stress fracture, the medial and cranial aspects of the transverse cross section corresponding to the stress fracture site, and the middle of the diaphysis of the humerus of a simplified in vitro laboratory preparation. The second objective was to determine whether computing strains solely in the direction of the longitudinal axis of the humerus in the mathematical model was inherently limited by comparing the strains measured along the longitudinal axis of the bone to the principal strain magnitudes and directions. The final objective was to determine whether the mathematical model formulated in Part I [Pollock et al., 2008, ASME J. Biomech. Eng., 130, p. 041006] is valid for determining the bone surface strains at the various locations on the humerus where experimentally measured longitudinal strains are comparable to principal strains. Triple rosette strain gauges were applied at four locations circumferentially on each of two cross sections of interest using a simplified in vitro laboratory preparation. The muscles included the biceps brachii muscle in addition to loaded shoulder muscles that were predicted active by the mathematical model. Strains from the middle grid of each rosette, aligned along the longitudinal axis of the humerus, were compared with calculated principal strain magnitudes and directions. The results indicated that calculating strains solely in the direction of the longitudinal axis is appropriate at six of eight locations. At the cranial and medial aspects of the middle of the diaphysis, the average minimum principal strain was not comparable to the average experimental longitudinal strain. Further analysis at the remaining six locations indicated that the mathematical model formulated in Part I predicts strains within +/-2 standard deviations of experimental strains at four of these locations and predicts negligible strains at the remaining two locations, which is consistent with experimental strains. Experimentally determined longitudinal strains at the middle of the diaphysis of the humerus indicate that tensile strains occur at the cranial aspect and compressive strains occur at the caudal aspect while the horse is standing, which is useful for fracture fixation.  相似文献   

2.

Background

The purpose of this study was to evaluate the biomechanical advantages of medial support screws (MSSs) in the locking proximal humeral plate for treating proximal humerus fractures.

Methods

Thirty synthetic left humeri were randomly divided into 3 subgroups to establish two-part surgical neck fracture models of proximal humerus. All fractures were fixed with a locking proximal humerus plate. Group A was fixed with medial cortical support and no MSSs; Group B was fixed with 3 MSSs but without medial cortical support; Group C was fixed with neither medial cortical support nor MSSs. Axial compression, torsional stiffness, shear stiffness, and failure tests were performed.

Results

Constructs with medial support from cortical bone showed statistically higher axial and shear stiffness than other subgroups examined (P<0.0001). When the proximal humerus was not supported by medial cortical bone, locking plating with medial support screws exhibited higher axial and torsional stiffness than locking plating without medial support screws (P≤0.0207). Specimens with medial cortical bone failed primarily by fracture of the humeral shaft or humeral head. Specimens without medial cortical bone support failed primarily by significant plate bending at the fracture site followed by humeral head collapse or humeral head fracture.

Conclusions

Anatomic reduction with medial cortical support was the stiffest construct after a simulated two-part fracture. Significant biomechanical benefits of MSSs in locking plating of proximal humerus fractures were identified. The reconstruction of the medial column support for proximal humerus fractures helps to enhance mechanical stability of the humeral head and prevent implant failure.  相似文献   

3.
Surgical treatment of proximal humeral fractures remains challenging in elderly patients, primarily due to insufficient implant fixation. Both bone quality and physiological-like loading conditions are commonly overlooked during pre-clinical in vitro evaluation. However, this knowledge is necessary in order to improve surgical treatment of the proximal humerus and the mechanical behavior of implants, particularly in patients with complex fractures and weak bone stock. We hypothesize that the bone quality has a high influence on the bone straining, independent of the arm position. The goal of this study was to determine the straining of the intact and fractured proximal humerus under physiological-like loading conditions. Furthermore, the impact of augmentation on tissue straining was evaluated.

Two representative humeri were selected for this study, one osteoporotic and one reference quality, and scanned using both QCT and DEXA (average DEXA VALUE=0.26 and 0.49 g/cm2 respectively). Subcaptial defects were generated, then stabilized with a plate prior to mechanical stiffness testing. From the QCT data, finite element models were generated and the in vitro stiffness tests analytically simulated. Under physiological-like loading conditions, the straining of the bone and implant were analyzed for 0°, 90° forward flexion, and 90° abduction.

Maximal strain values were found for the intact and fractured bone at 90° abduction. This study demonstrates that the straining in a fractured bone of poor quality leads to considerably higher bone strains (up to +30%) than in a more healthy bone. Augmentation of a central void under physiological-like loading with commercial cement led to mechanical failure at the bone–cement interface.

New concepts for the surgical treatment of complex fractures of the proximal humerus should take bone distribution into account and thereby allow effective treatment of fractures in osteoporotic patients. The ultimate salvage procedure of augmentation has mechanical limitations as long as current cement materials are used in osteoporotic patients.  相似文献   


4.
The relationship between the position transplanted in a host limb bud, the orientation of a graft in a host limb bud, and the extra limb structures formed was studied by juxtaposing normally nonadjacent embryonic chick wing bud tissue. In one series of transplantation operations, two different wedges (ectoderm and mesoderm) of stage 21 right donor posterior wing bud tissue were transplanted to the middle of a host stage 20 to 22 right wing bud such that the dorsal-ventral polarity of the graft and host were the same or reversed. The results of these transplantation operations show that the formation of supernumerary limb structures depends on the position of origin of the donor tissue, the anterior-posterior position transplanted in a host limb bud, and the orientation of the graft in the host limb bud. In a second series of transplantation operations, the relationship between the proximodistal position where posterior donor tissue is transplanted in an anterior host site and the extra structures formed was studied. A wedge of posterior stage 21 right wing bud tissue was transplanted to an anterior proximal or anterior distal site of a stage 22 to 24 host right wing bud. The results of these transplantation operations show that when the donor tissue is transplanted to an anterior proximal position in a host wing bud, then limbs with only a duplicated humerus result, whereas, when transplanted to an anterior distal position, then limbs with a duplicated forearm element and extra digits result.  相似文献   

5.
The relationship between the mechanical loading undergone by a bone and its form has been widely assumed as a premise in studies aiming to reconstruct behavioral patterns from skeletal remains. Nevertheless, this relationship is complex due to the existence of many factors affecting bone structure and form, and further research combining structural and shape characteristics is needed. Using two‐block PLS, which is a test to analyze the covariance between two sets of variables, we aim to investigate the relationship between upper‐limb entheseal changes, cross‐sectional properties, and contour shape of the humeral diaphysis. Our results show that individuals with strongly marked entheseal changes have increased diaphyseal rigidities. Bending rigidities are mainly related to entheseal changes of muscles that cross the shoulder. Moreover, the entheseal changes of muscles that participate in the rotation of the arm are related to mediolaterally flatter and ventrodorsally broader humeral shapes in the mid‐proximal diaphysis. In turn, this diaphyseal shape is related to diaphyseal rigidity, especially to bending loadings. The shape of the diaphysis of the rest of the humerus does not covary either with rigidity or with entheseal changes. The results indicate that large muscular scars, such as those found in the mid‐proximal diaphyses, seem to be related to diaphyseal shape, whereas this relationship is not seen for areas with less direct influences of powerful muscles. Am J Phys Anthropol 150:609–617, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
The objectives of this research were to develop a methodology for three-dimensional finite element (FE) modeling of the inferior glenohumeral ligament complex (IGHL complex) as a continuous structure, to determine optimal mesh density for FE simulations, to examine strains and forces in the IGHL complex in clinically relevant joint positions, and to perform sensitivity studies to assess the effects of assumed material properties. A simple translation test in the anterior direction was performed on a cadaveric shoulder, with the humerus oriented at 60 degrees of glenohumeral abduction and 0 degrees of flexion/extension, at 0 degrees , 30 degrees and 60 degrees of humeral external rotation. The geometries of the relevant structures were extracted from volumetric CT data to create a FE model. Experimentally measured kinematics were applied to the FE model to simulate the simple translation test. First principal strains, insertion site forces and contact forces were analyzed. At maximum anterior humeral translation, strains in the IGHL complex were highly inhomogeneous for all external rotation angles. The motion of the humerus with respect to the glenoid during the simple translation test produced a tangential load at the proximal and distal edges of the IGHL complex. This loading was primarily in the plane of the inferior glenohumeral ligament complex, producing an in-plane shear-loading pattern. There was a significant increase in strain with increasing angle of external rotation. The largest insertion site forces occurred at the axillary pouch insertion to the humerus (36.7N at 60 degrees of external rotation) and the highest contact forces were between the anterior band of the IGHL complex and the humeral cartilage (7.3N at 60 degrees of external rotation). Strain predictions were highly sensitive to changes in the ratio of bulk to shear modulus of the IGHL complex, while predictions were moderately sensitive to changes in elastic modulus of the IGHL complex. Changes to the material properties of the humeral cartilage had little effect on predicted strains. The methodologies developed in this research and the results of the mesh convergence and sensitivity studies provide a basis for the subject-specific modeling of the mechanics of the IGHL complex.  相似文献   

7.
Jung YH  Han SH  Shin T  Oh MY 《Molecules and cells》2002,14(2):224-230
We determined the nucleotide sequences of the hypervariable D-loop region of mitochondrial DNA (mtDNA) from horse bone (humerus, A.D. 700 to A.D. 800) that was excavated from the Kwakji archaeological site, Jeju, Korea. We compared them with ones from extant horses. We designed three pairs of oligonucleotide primers from the tRNA-Thr and tRNA-Phe gene regions of mtDNA that are highly conserved among many other animal species. We cloned 232, 336, and 644 bp from the horse bone in order to determine the mtDNA D-loop sequence. The sequence was 1,124 bp long; the middle contained 19 tandem repeats of an 8-bp sequence (TGTGCACC) that is specific to equines. The mtDNA D-loop region contained each base (total number, percentage of total) as follows: A (317, 28.20%), C (336, 29.89%), G (169, 15.04%), and T (302, 26.87%). This sequence, like those of other horse populations, was AT rich. Sequence divergence was the lowest (1.71%) between the ancient horse bone and that of the Thoroughbred horse 1. The neighbor-joining and strict consensus tree of three of the most parsimonious trees also suggested that the ancient bone was considerably unrelated to native Jeju horses. The molecular phylogenetic characteristics of the horse bone that was excavated from the Kwakji archaeological site (Jeju, Korea) showed that some horse breeds may have existed on Jeju Island, Korea before Mongolian horses were introduced. The horse bone that was excavated from the Kwakji archaeological site may aid future research on the origin and ancestry of native Jeju horses.  相似文献   

8.
The purpose of this study is to investigate the critical threshold stress causing bone resorption evaluated from strain measurement in vivo, comparing the various finite element models. In this study strains of miniplates used for mandibular fractures were measured once a week until the strains reduced. The maximum bite force for each patient was applied in the incisal, right molar and left molar region. The strains increased and reached a peak level at 2-4 weeks, whereas the bite forces increased during the period of measurements. A 3-D osteosynthesis model using finite element method showed that the compressive stresses of the bone surrounding screws ranged within approximately -40 MPa under the condition generating the same amounts of strains measured in the miniplates. Furthermore, various finite element models simulating mandibular reconstruction using the fibular graft were constructed. The models for reconstruction using single strut fibula showed distinct stress concentration in the cortical bone surrounding screws, and the peak stress levels were 2 to 3 times as strong as that of the fracture model. We conclude that critical threshold for bone resorption should be approximately -50 MPa (3600 micro strain).  相似文献   

9.
The rat forelimb compression model has been used widely to study bone response to mechanical loading. We used strain gages to assess load sharing between the ulna and radius in the forelimb of adult Fisher rats. We used histology and peripheral quantitative computed tomography (pQCT) to quantify ulnar bone formation 12 days after in vivo fatigue loading. Lastly, we developed a finite element model of the ulna to predict the pattern of surface strains during compression. Our findings indicate that at the mid-shaft the ulna carries 65% of the applied compressive force on the forelimb. We observed large variations in fatigue-induced bone formation over the circumference and length of the ulna. Bone formation was greatest 1-2 mm distal to the mid-shaft. At the mid-shaft, we observed woven bone formation that was greatest medially. Finite element analysis indicated a strain pattern consistent with a compression-bending loading mode, with the greatest strains occurring in compression on the medial surface and lesser tensile strains occurring laterally. A peak strain of -5190 microepsilon (for 13.3N forelimb compression) occurred 1-2 mm distal to the mid-shaft. The pattern of bone formation in the longitudinal direction was highly correlated to the predicted peak compressive axial strains at seven cross-sections (r2 = 0.89, p = 0.014). The in-plane pattern of bone formation was poorly correlated to the predicted magnitude of axial strain at 51 periosteal locations (r2 = 0.21, p < 0.001), because the least bone formation was observed where tensile strains were highest. These findings indicate that the magnitude of bone formation after fatigue loading is greatest in regions of high compressive strain.  相似文献   

10.
Longitudinal and principal strain recordings were made in vivo at three sites (dorsal, anterior, and ventral) on the humeral midshaft of pigeons executing five modes of free flight: Take-off, level flight, landing, vertical ascent, and near-vertical descent. Strains were also recorded while the birds flew carrying weights that were 33%, 50%, or 100% of their body weight. The relative distribution of strain measured at the three surface midshaft sites and across the bone's cortex was found to be similar for all flight modes. Principal strains recorded in the dorsal and ventral humerus indicated considerable torsion produced by aerodynamic loading of the wing surface posterior to the bone. Measured torsional shear strains (maximum: 2,700–4,150 μ ε during level flight) were 1.5 times greater than longitudinal strains. In addition to torsion, the humerus is also subjected to significant dorsoventral bending owing to lift forces acting on the wing during the downstroke. Analysis of the cross-sectional distribution of longitudinal strains at the humeral midshaft cortex shows that the orientation of bending shifts in a regular manner during the downstroke, indicating that the wing generates progressively more thurst (vs. lift) later in the downstroke. This shift is less during take-off and vertical ascent when greater lift is required. Peak principal and longitudinal strains increased by an average of only 50% from landing to vertical ascending flight and take-off (e.g., dorsal humerus: ?1,503 to ?2,329 μ ε) and did not exceed ?2,600 μ epsiv; at any site, even when the birds flew carrying twice their body weight. Strains recorded when birds flew at two times their body weight (100% BW load) were similar in magnitude to those recorded during vertical ascent and take-off and likely represent those developed during maximal performance. Strains developed within the midshaft were maximal in the anterodorsal and posteroventral cortices, not at the dorsal, ventral, and anterior sites at which strain was recorded. Consequently, maximum strains experienced by the bone are probably 20–25% greater than those recorded (ca. 3,200 μ ε), indicating a safety factor of about 3.5 for compressive strain failure. The much higher shear strains, however, indicate a lower safety factor (1.9), in which the bone's torsional strength is its most critical design feature. Finally, the magnitude and distribution of strains developed in the humerus of pigeons are generally similar to those recorded in the humerus of large fruit-eating bats during flight. © 1995 Wiley-Liss, Inc.  相似文献   

11.
A proximal humerus fragment referred to as Azhdarchidae indet. from the Rybushka Formation (Upper Cretaceous, Lower Campanian) of the Beloe Ozero locality in Saratov Region is described. The proximal articular surface is not saddle-shaped, has a weakly convex profile in the frontal section. The most posteriorly projecting part of the proximal articular surface is displaced ventrally. A large pneumatic foramen is located on the anterior surface ventral to the base of deltopectoral crest and close to the proximal articular surface. The humeral head is slightly declined from the diaphysis and only slightly overhangs the diaphysis posteriorly. This proximal humerus fragment possibly belongs to Volgadraco bogolubovi Averianov, Arkhangelsky et Pervushov, 2008, described from the Rybushka Formation of the Shirokii Karamysh 2 locality in Saratov Region.  相似文献   

12.
S C Cowin 《Journal of biomechanics》1987,20(11-12):1111-1120
A theory of surface bone remodeling is extended to include the effects of shearing strains as well as normal strains. It is shown that the surface velocity can only depend upon the square of shearing strains, but that it can be linear as well as quadratic in the normal strains. The theory is applied to predict the surface bone remodeling in the diaphysis of a long bone under combined axial and torsional loading. In the general case the diaphysis of the long bone is modeled as a hollow thin-walled cylinder of arbitrary cross-section and, in a special case, as a right circular thin-walled tube. It is shown here that if a thin-walled right circular cylinder capable of surface remodeling is subjected to an axial compressive load and a twisting torque, then the effect of increasing the torque is the same as the effect of decreasing the axial compressive load, namely the mean radius of the cross-section increases and the wall width thins. Conversely, the effect of reducing the torque is the same as the effect of increasing the axial compressive load, namely the mean radius of the cross-section decreases and the wall width thickens.  相似文献   

13.
Mechanical forces regulate the function of bone cells. In this paper, the effects of cyclic stretching on osteoblasts derived from rat calvaria were studied at a magnitude occurring in physiological loaded bone tissue. A four-point bending apparatus was used to apply cyclic stretching on osteoblasts. Stretching at 500 microepsilon for 2-24 h resulted in an increase in matrix synthesis(P<0.01). In contrast, the cyclic stretching at 1000 and 1500 microepsilon for 2-24 h inhibited osteoblast collagen production (P<0.01). We also described our new loading method to increase strain magnitude step-by-step. The strain magnitude increased by 500 microepsilon increments from 500 to 1500 microepsilon every 2 or 12 h, respectively. Results showed that osteoblasts could absorb large amount of proline for collagen synthesis when stretched at 500 microepsilon. However, not all the absorbed proline was used to synthesize collagen. Some of it was stored in cells. When the suitable signal (500 microepsilon) was changed to an inhibiting signal (1000 microepsilon), cells responded to it accordingly and released proline to medium. These results demonstrate that the response of osteoblasts is dependent on the magnitude of the strain applied and cells can adjust their bio-chemical response to adapt to the changing environmental stimulation.  相似文献   

14.
Bone-loading response varies with strain magnitude and cycle number.   总被引:3,自引:0,他引:3  
Mechanical loading stimulates bone formation and regulates bone size, shape, and strength. It is recognized that strain magnitude, strain rate, and frequency are variables that explain bone stimulation. Early loading studies have shown that a low number (36) of cycles/day (cyc) induced maximal bone formation when strains were high (2,000 microepsilon) (Rubin CT and Lanyon LE. J Bone Joint Surg Am 66: 397-402, 1984). This study examines whether cycle number directly affects the bone response to loading and whether cycle number for activation of formation varies with load magnitude at low frequency. The adult rat tibiae were loaded in four-point bending at 25 (-800 microepsilon) or 30 N (-1,000 microepsilon) for 0, 40, 120, or 400 cyc at 2 Hz for 3 wk. Differences in periosteal and endocortical formation were examined by histomorphometry. Loading did not stimulate bone formation at 40 cyc. Compared with control tibiae, tibiae loaded at -800 microepsilon showed 2.8-fold greater periosteal bone formation rate at 400 cyc but no differences in endocortical formation. Tibiae loaded at -1,000 microepsilon and 120 or 400 cyc had 8- to 10-fold greater periosteal formation rate, 2- to 3-fold greater formation surface, and 1-fold greater endocortical formation surface than control. As applied load or strain magnitude decreased, the number of cyc required for activation of formation increased. We conclude that, at constant frequency, the number of cyc required to activate formation is dependent on strain and that, as number of cyc increases, the bone response increases.  相似文献   

15.
Hip fractures are the most serious complication of osteoporosis and have been recognized as a major public health problem. In elderly persons, hip fractures occur as a result of increased fragility of the proximal femur due to osteoporosis. It is essential to precisely quantify the strength of the proximal femur in order to estimate the fracture risk and plan preventive interventions. CT-based finite element analysis could possibly achieve precise assessment of the strength of the proximal femur. The purpose of this study was to create a simulation model that could accurately predict the strength and surface strains of the proximal femur using a CT-based finite element method and to verify the accuracy of our model by load testing using fresh frozen cadaver specimens. Eleven right femora were collected. The axial CT scans of the proximal femora were obtained with a calibration phantom, from which the 3D finite element models were constructed. Materially nonlinear finite element analyses were performed. The yield and fracture loads were calculated, while the sites where elements failed and the distributions of the principal strains were determined. The strain gauges were attached to the proximal femoral surfaces. A quasi-static compression test of each femur was conducted. The yield loads, fracture loads and principal strains of the prediction significantly correlated with those measured (r=0.941, 0.979, 0.963). Finite element analysis showed that the solid elements and shell elements in undergoing compressive failure were at the same subcapital region as the experimental fracture site.  相似文献   

16.
目的:研究锁定钢板固定术后内侧柱的支撑能力与肱骨近端骨折患者预后的相关关系。方法:选取107例肱骨近端骨折患者作为研究对象,根据不同内侧柱支撑重建方式将所有患者分为四组,其中A组患者48例,均接受肱骨近端内侧骨皮质解剖复位以重建内侧柱支持;B组患者20例,均使用1枚支撑螺钉置入肱骨头内下方的软骨下骨,C组患者14例,均使用2枚或2枚以上支撑螺钉置入肱骨头内下方的软骨下骨;D组患者25例,均未进行肱骨近端内侧骨皮质解剖复位亦未使用锁定螺钉固定。比较各组患者术后Constant评分、VAS(visual analogue scale)评分、骨折愈合时间、肱骨头高度丟失值、肱骨头内翻角、并发症发生情况及二次手术率。结果:与无支撑重建组相比,骨皮质解剖复位组、单枚螺钉支撑重建组以及多枚螺钉支撑重建组的VAS评分、骨折愈合时间、肱骨头高度丟失值以及肱骨头内翻角均明显降低,而Constant评分明显升高,其中骨皮质解剖复位组的变化幅度最大多枚螺钉支撑重建组次之,单枚螺钉支撑重建组变化幅度最小,差异具有统计学意义(t=23.100,22.130,7.267,68.440,47.900,均P0.001);与无支撑重建组相比,骨皮质解剖复位组、单枚螺钉支撑重建组以及多枚螺钉支撑重建组的术后总并发症发生率和二次手术率均明显降低,其中骨皮质解剖复位组的降低幅度最大,单枚螺钉支撑重建组次之,多枚螺钉支撑重建组降低幅度最小差异具有统计学意义(X~2=12.938,11.904,P=0.005,0.008)。结论:锁骨钢板固定术后内侧柱的支撑能力与肱骨近端异型解剖钢板患者预后相关,内侧柱支撑能力的越高患者术后骨折愈合、肩关节恢复越佳,而并发症发生率以及二次手术率越低。  相似文献   

17.
Apparent yield strains for trabecular bone are uniform within an anatomic site but can vary across site. The overall goal of this study was to characterize the contribution of inter-site differences in trabecular architecture to corresponding variations in apparent yield strains. High-resolution, small deformation finite element analyses were used to compute apparent compressive and tensile yield strains in four sites (n = 7 specimens per site): human proximal tibia, greater trochanter, femoral neck, and bovine proximal tibia. These sites display differences in compressive, but not tensile, apparent yield strains. Inter-site differences in architecture were captured implicitly in the model geometries, and these differences were isolated as the sole source of variability across sites by using identical tissue properties in all models. Thus, the effects inter-site variations in architecture on yield strain could be assessed by comparing computed yield strains across site. No inter-site differences in computed yield strains were found for either loading mode (p > 0.19), indicating that, within the context of small deformations, inter-site variations in architecture do not affect apparent yield strains. However, results of ancillary analyses designed to test the validity of the small deformation assumption strongly suggested that the propensity to undergo large deformations constitutes an important contribution of architecture to inter-site variations in apparent compressive yield strains. Large deformations substantially reduced apparent compressive, but not tensile, yield strains. These findings indicate the importance of incorporating large deformation capabilities in computational analyses of trabecular bone. This may be critical when investigating the biomechanical consequences of trabecular thinning and loss.  相似文献   

18.
Previous approaches to measuring forces in the forearm have made the assumption that forces acting in the radius and ulna are uniaxial near the wrist and elbow. To accurately describe forces in the forearm and the forces in the interosseous ligament, we have developed a new methodology to quantitatively determine the 3-D force vectors acting in forearm structures when a compressive load is applied to the hand. A materials testing machine equipped with a six degree-of-freedom universal force–moment sensor (UFS) was employed to apply a uniaxial compressive force to cadaveric forearms gripped at the hand and humerus. Miniature UFSs were implanted into the distal radius and proximal ulna to measure force vectors there. A 3-D digitizing device was used to measure transformations between UFS coordinate systems, utilized for calculating the force vectors in the distal ulna, proximal radius, and the interosseous ligament (IOL). This method was found to be repeatable to within 3 N, and accurate to within 2 N for force magnitudes. Computer models of the forearm, generated from CT scans, were used to visualize the force vectors in 3-D. Application of this methodology to eight forearm specimens showed that the radius carries most of the load at the wrist while force in the IOL relieves load acting in the radius at the mid-forearm. For a 136 N applied hand force, the force in the IOL was 36±21 N. Advantages of this methodology include the determination of 3-D force vectors, especially those in the IOL, as well as computer generated 3-D visualization of results.  相似文献   

19.
The cross-sectional geometric parameters were determined serially along the diaphysis of 3 paired humeri and femora of chimpanzees by using the computed X-ray tomographic scans, and compared with those of humans. In magnitude, the femoral parameters were greater and humeral parameters were less, respectively, in humans than in chimpanzees. While the changing pattern among the parameters along the diaphysis was very similar both in the femur and humerus of chimpanzees, the pattern in the humans was reversed between the cross-sectional area and area moments of inertia. In chimpanzees, the femoral parameters increased toward the most proximal diaphysis, whereas humeral parameters yielded a moderate peak in a portion slightly proximal to mid-shaft. Potential mechanisms responsible for these findings were discussed.  相似文献   

20.
Mechanical loading of muscle action is concentrated at muscle attachment sites; thus there may be a potential for site-specific variation in cortical bone thickness. Humeri from an early 20th-century Finnish (Helsinki) and two medieval English (Newcastle, Blackgate and York, Barbican) populations were subjected to pQCT scanning to calculate site-specific cross-sectional cortical bone area (CA) for four locations and to measure cortical thickness at muscle attachment sites and non-attachment sites. We found that CA at 80% of humerus length was significantly reduced compared to more distal cross-sections, which can be due to reduced stresses at the proximal shaft. The principal direction of loading at 80% humerus length was towards mediolateral plane, likely due to fixing the humerus close to the torso. At 35% the main direction of loading was towards anteroposterior plane, reflecting elbow flexing forces. The principal direction of loading varied between populations, sides and sexes at 50% humerus length due to preference between elbow and shoulder joint; thus this location might be useful when trying to infer differences in activity. These changes are likely due to overall shaft adaptation to forces acting at the humerus. In addition, we found a potential for site-specific variation in cortical thickness; cortical bone at muscle attachment sites was significantly thicker compared to non-attachment sites. Lastly, CA at 35% of humerus length and cortical thickness at non-attachment sites decreased with age. These results underline the importance of muscle loading for bone mass preservation as well as indicate that a site-specific variation of bone mass is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号