首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temporal and spatial distribution patterns of lotic larval trichopteran assemblages in relation to environmental variables were investigated in Madeiran streams using multivariate analyses. TWINSPAN classification detected distinct faunal assemblages related to spatial factors between non-polluted high altitude sites and lower lying enriched sites where tolerant taxa were predominant but showed strong seasonal shifts in species composition and abundance. The 15 TWINSPAN end groups were grouped into five arbitrary clusters based upon the seasonal and spatial changes in the trichopteran assemblages detected by the analysis. Significant differences between environmental variables (distance from source, altitude, temperature, conductivity, alkalinity and nitrate) and the trichopteran assemblages (using trichopteran based metrics) of these clusters were confirmed by the Kruskal-Wallis test (H) and Dunn’s test. Chemical classification of samples within the clusters revealed a strong association between trichopteran assemblages and water quality. Canonical Correspondence Analysis and Monte Carlo global permutation tests also identified significant associations between the larval assemblages and physicochemical variables such as temperature and conductivity along a strong physical gradient (altitude, slope) and nitrate along a weaker seasonal gradient. Analysis of functional feeding group distribution patterns clearly showed that mid to high altitude indigenous woodland sites were trophically diverse whilst the lower reaches of the islands streams are trophically impoverished with strong seasonal shifts between two feeding groups of enrichment tolerant taxa. Trichopteran shredders are exclusive to indigenous woodland sites, indicating a limited distribution associated with land use, allochthonous input and habitat destruction. The results indicate that several ‘environmental filters’ operate at different levels upon the islands trichopteran fauna, producing temporally and spatially distinct ‘subsets’ of species best able to exploit conditions and resources at a given site or time, confounding the direct comparison of these insular systems with the findings of the River Continuum Concept, traditionally associated with unaffected continental lotic systems.  相似文献   

2.
Retention of carbon (C), either by physical mechanisms or microbial uptake, is a key driver of the transformation and storage of C and nutrients within ecosystems. Both the molecular composition and nutrient content of organic matter influence the rate at which it is retained in streams, but the relative influence of these characteristics remains unclear. We estimated the effects of nutrient content and molecular composition of dissolved organic C (DOC) on uptake in boreal streams by measuring rates of C retention, in situ, following introduction of leachates derived from alder, poplar, and spruce trees subject to long-term fertilization with nitrogen (N) or phosphorus (P). Leachate C:N varied approximately twofold, and C:P varied nearly 20-fold across species and nutrient treatments. Uptake of DOC was greatest for leachates derived from trees that had been fertilized with P, a finding consistent with P-limitation of uptake and/or preferential sorption of P-containing molecules. Optical measures indicated that leachates derived from the three tree species varied in molecular composition, but uptake of DOC did not differ across species, suggesting weak constraints on retention imposed by molecular composition relative to nutrient limitation. Observed coupling between P and C cycles highlights the potential for increased P availability to enhance DOC retention in headwater streams.  相似文献   

3.
Temporary streams are characterised by short periods of seasonal or annual stream flow after which streams contract into waterholes or pools of varying hydrological connectivity and permanence. Although these streams are widespread globally, temporal variability of their ecology is understudied, and understanding the processes that structure community composition in these systems is vital for predicting and managing the consequences of anthropogenic impacts. We used multivariate and univariate approaches to investigate temporal variability in macroinvertebrate compositional data from 13 years of sampling across multiple sites from autumn and spring, in South Australia, the driest state in the driest inhabited continent in the world. We examined the potential of land-use, geographic and environmental variables to predict the temporal variability in macroinvertebrate assemblages, and also identified indicator taxa, that is, those highly correlated with the most significantly associated physical variables. Temporal trajectories of macroinvertebrate communities varied within site in both seasons and across years. A combination of land-use, geographic and environmental variables accounted for 24% of the variation in community structure in autumn and 27% in spring. In autumn, community composition among sites were more closely clustered together relative to spring suggesting that communities were more similar in autumn than in spring. In both seasons, community structure was most strongly correlated with conductivity and latitude, and community structure was more associated with cover by agriculture than urban land-use. Maintaining temporary streams will require improved catchment management aimed at sustaining seasonal flows and critical refuge habitats, while also limiting the damaging effects from increased agriculture and urban developments.  相似文献   

4.
5.
6.
Luz Boyero  Jaime Bosch 《Biotropica》2002,34(4):567-574
The detection of spatial variation in macroinvertebrate drift depends on the spatial scale of investigation in streams of the La Selva Biological Station, Costa Rica. Drift samples were taken in a spatially nested design, with two streams, two reaches per stream, two riffles per reach, and four replicate samples per riffle. Drift showed little variation among streams, but varied significantly at the scales of reach and riffle, with variation among samples also high. In addition, sampling took place at two temporal scales: diel and at two different periods that differed in rainfall conditions. Drift diel periodicity was a clear pattern, while only density of individuals varied among sampling periods. This is the first study of macroinvertebrate drift at multiple spatial scales, despite the recognition that multi‐scale studies are essential for a more complete understanding of community patterns and processes.  相似文献   

7.
This study used high-pressure size exclusion chromatography (HPSEC) to measure the changes in molecular weight distributions of dissolved organic matter (DOM) of two Northern Michigan streams following inoculation with bacterial concentrates from the same locations. During the initial 12 h of the experiment, weight average molecular weight (M w ) of DOM decreased, as high molecular weight components were lost from solution. After 12 h, the M w of DOM increased, primarily because of a loss of intermediate to lower molecular weight components. Leucine incorporation showed little or no bacterial metabolism during the first 12 h, but metabolism increased substantially after 12 h. The initial loss of high molecular weight components during the period of little or no bacterial metabolism suggests preferential adsorption of these components to the bacterial surfaces, perhaps followed by metabolism. This suggested interpretation is consistent with previous observations of preferential adsorption of higher molecular weight components to viable but non-metabolizing Bacillus subtilis and to mineral surfaces. The latter loss of lower molecular weight components was most likely due to bacterial metabolism of the DOM, which is consistent with previous observations that lower molecular weight components are more biodegradable. The HPSEC technique uses 254 nm wavelength for detection and focuses primarily on humic- and fulvic-type components rather than low molecular weight organic molecules, such as carbohydrates. Thus, results confirmed that humic/fulvic components are biodegradable, but did not address other DOM components.  相似文献   

8.
Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver in aquatic ecosystem function. Climate, land use, and forest cover changes all impact stream DOM and alter biogeochemical cycles in terrestrial environments. We determined the temporal variation in DOM quantity and quality in headwater streams at a reference watershed (REF), a watershed clear-cut 30 years ago (CC), and a watershed converted to a white pine plantation 50 years ago (WP) at the US Forest Service, Coweeta Hydrologic Laboratory, in the Nantahala Mountains of western North Carolina, USA. Average stream dissolved organic carbon (DOC) concentrations in CC or WP were 60 and 80% of those in REF, respectively. Stream DOM composition showed that the difference was mainly due to changes in humic-like components in chromophoric DOM. In addition, excitation–emission matrix fluorescence data with parallel factor analysis indicate that although the concentration of protein-like components did not differ significantly among watersheds, their relative abundance showed an enrichment in CC and WP compared to REF. The ratio of humic acid-type to fulvic acid-type components was highest and lowest at REF and WP, respectively. Our data suggest that forest ecosystem disturbance history affects the DOM quantity and quality in headwater streams over decades as a result of changes in watershed soil organic matter characteristics due to differences in organic matter inputs.  相似文献   

9.
《Plains anthropologist》2013,58(34):294-301
Abstract

The major archeological complexes of the Central Plains can be arranged according to the Willey and Phillips system, thus recognizing not only content but time and space diemnsions.  相似文献   

10.
The intraannual dynamics of particulate organic nitrogen (PON) and two fractions of dissolved organic nitrogen (DON) were investigated in two Rocky Mountain streams draining watersheds with low rates of N deposition. Organic nitrogen accounted for over 60% of the total annual nitrogen export and consisted mostly of DON. Nitrate peaked during winter months and declined considerably during the growing season (less than 10 µg/L) suggesting the importance of biotic uptake. Concentrations of PON, total DON, and two DON fractions (humic and non-humic) peaked during spring runoff and were positively related to discharge, indicating hydrologic influence. Total DON and its two fractions showed significant inverse relationships to nitrate, indicating that DON and nitrate followed different intraannual patterns. Despite its seasonal fluctuations in concentration, PON showed a consistent carbon–nitrogen (C:N) ratio suggesting that it was relatively uniform in composition. Fractionation studies indicated that DON was primarily of non-humic origin, whereas dissolved organic carbon (DOC) was mainly derived from humic sources. The two DON fractions differed from each other in seasonal patterns of concentration and C:N ratio. The proportion of humic DON increased during snowmelt, and there were diverging seasonal patterns in the C:N ratio of the two fractions implying variations in bioavailability. Although organic nitrogen is commonly treated as a single pool in ecological studies, our results indicated that DON consists of fractions that undergo large intraannual changes in proportions and chemical composition. Treatment of DON as a single pool may be misleading from the viewpoint of understanding ecosystem processes directly related to changes in its sources and biological reactivity.  相似文献   

11.
Tropical forest conservation and restoration require an understanding of the movements and habitat preferences of important seed dispersers. With forests now being altered at an unprecedented rate, avian frugivores are becoming increasingly vital for forest regeneration. Seed movement, however, is highly dependent on the behavioral characteristics of their dispersers. Here, we examined the movements, habitat preferences, and range sizes of two African frugivores: the Black‐casqued (Ceratogymna atrata) and the White‐thighed (Bycanistes albotibialis) Hornbill, in the lowland rain forests of southern Cameroon. Using satellite transmitters, we tracked eight hornbills for 3 yr to characterize their movements and relate them to environmental landscape features. Hornbill movements differed significantly, with B. albotibialis ranging over larger areas (mean = 20,274 ha) than C. atrata (mean = 5604 ha), and females of both species covering over 15 times the area of males. Evidence suggests that movements are irruptive during particular periods, perhaps driven by low resource availability. In addition, hornbills often returned to the same localities within a year, although movements were not characterized as migratory. Both species displayed significant differences in habitat preference, with B. albotibialis utilizing disturbed habitat more frequently than Catrata (= ?22.04, = 2.2 × 10?16). Major roads were found to act as barriers for C. atrata, but not for B. albotibialis. The ability of both hornbill species to move large distances suggests hornbills will play a vital role in the maintenance and regeneration of rain forests in Central Africa as forest fragmentation increases and terrestrial vertebrates decline in numbers.  相似文献   

12.
To evaluate the role of dissolved organic matter (DOM) on microbial community metabolism, we established extracellular enzyme activity (EEA) and substrate-induced respiration (SIR) profiles of sediment samples collected from littoral and profundal regions of the western, central, and eastern basins of Lake Erie. Lake Erie is spatially structured such that the central and western basins receive relatively major inputs of allochthonous DOM in comparison to the eastern basin. Overall, spatial patterns of EEA and SIR profiles suggest both greater metabolic diversity and activity in the littoral regions of the central and western basins. In contrast, the eastern basin demonstrated much less structuring between littoral and profundal areas. To evaluate whether the observed spatial patterns are the result of microbial community adaptations to local DOM availability, we performed three experimental treatments by inoculating sediment samples with polyvinylpyrrolidone, which sequesters large polyphenols, or with either vanillin or catechol, two small phenolic compounds. Our results revealed that esterase and glycosidase EEA from the eastern basin were induced by small phenolics and inhibited by large polyphenols. In contrast, the addition of small phenolics decreased esterase and glycosidase activities from the central basin, while polyphenols had a negligible effect. These results suggest that the source and composition of DOM play a significant role in the local adaptation of microbial communities, determining large-scale spatial patterns of microbial functional diversity in Lake Erie sediments.  相似文献   

13.
黄淮海冲积平原区土壤有机质时空变异特征   总被引:29,自引:7,他引:29  
张世熔  黄元仿  李保国  高峻 《生态学报》2002,22(12):2041-2047
通过分析124个样点1980年和2000年耕层土壤的有机质含量,研究了黄淮海冲积平原区河北省曲周县土壤有机质的时空变异特征,研究结果表明,该县目前土训有机质含量平均为12.89g/kg。与1980年相比较增加了4.11g/kg,年均增加0.21g/kg。但因各农户施用有机肥量的不同和管理水平的差异。占全县耕地面积6%的土壤有机质含量不升反降,县内各区域有机质的增长趋势为西南部和东南部高于中部和北部,潮上,盐土和褐土2000年有机质含量分别比1980年增加45.51%,82.48%和68.57%。  相似文献   

14.
SYNOPSIS. For reef fish in temperate marine regions, such componentsof local assemblage diversity (i.e., within a reef) as speciesrichness, total fish density, and rank order of abundance canremain relatively constantthrough time. Long-term data (17 years)for assemblages on 2 reefs in Southern California revealed that,despite high turnover in rare species, overall species richnesswas affected only moderately by major oceanographicdisturbances.This resilience of the assemblage is in marked contrast to hightemporal variation in densities exhibited by many local populationsof individual species, and it suggests that measurements ofdiversity to indicate status of an assemblage should be usedwith caution. Here we consider various processes and factors,together with the spatial and temporal scales over which theyoperate, that can influence local diversity (and its estimation)of reef fishes. Mechanisms that can "buffer" local diversityof reef fishes include dispersal of young that inter-connectssubpopulations, high "inertia" in relative abundance and populationstructures (especially for long-lived species), and broad ecologicalrequirements of many species. These considerations suggest thatthe effect of disturbances on local diversity of reef fisheswill depend in part on the magnitude, duration, frequency andspatial scale of the perturbation. While long-term data arefew, available information suggests that, due to life historycharacteristics of the fish and the spatial and temporal scalesat which disturbances are likely to occur, assemblages of temperatemarine reef fish might be relatively resilient to environmentalperturbations  相似文献   

15.
Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4–N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of DOM fluorescence. Seasonal DOM slug additions were conducted in three headwater streams draining a bog, forested wetland, and upland forest using DOM collected by leaching watershed soils. We also used DOM collected from bog soil and salmon carcasses to perform additions in the upland forest stream. DOC uptake velocity ranged from 0.010 to 0.063 mm s−1 and DON uptake velocity ranged from 0.015 to 0.086 mm s−1, which provides evidence for the whole-stream uptake of allochthonous DOM. These findings imply that wetlands could potentially be an important source of DOM to support stream heterotrophic production. There was no significant difference in the uptake of DOC and DON across the soil leachate additions (P > 0.05), although differential uptake of DOM fractions was observed as protein-like fluorescence was removed from the water column more efficiently than bulk DOC and DON (P < 0.05). Moreover, PARAFAC analysis of DOM fluorescence showed that protein-like fluorescence decreased downstream during all DOM additions, whereas humic-like fluorescence did not change. This differential processing in added DOM suggests slow and fast turnover pools exist for aquatic DOM. Taken together, our findings argue that DON could potentially fill a larger role in satisfying biotic N demand in oligotrophic headwater streams than previously thought. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author contributions  J.B.F. conceived of or designed study, performed research, analyzed data, contributed new methods or models, and wrote the paper. E.H. conceived of or designed study and analyzed data. R.T.E. conceived of or designed study and analyzed data. J.B.J. contributed new methods or models and analyzed data.  相似文献   

16.
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) has proven to be a powerful technique revealing complexity and diversity of natural DOM molecules, but its application to DOM analysis in grazing-impacted agricultural systems remains scarce. In the present study, we presented a case study of using ESI-FTICR-MS in analyzing DOM from four headwater streams draining forest- or pasture-dominated watersheds in Virginia, USA. In all samples, most formulas were CHO compounds (71.8–87.9%), with other molecular series (CHOS, CHON, CHONS, and CHOP (N, S)) accounting for only minor fractions. All samples were dominated by molecules falling in the lignin-like region (H/C = 0.7–1.5, O/C = 0.1–0.67), suggesting the predominance of allochthonous, terrestrial plant-derived DOM. Relative to the two pasture streams, DOM formulas in the two forest streams were more similar, based on Jaccard similarity coefficients and nonmetric multidimensional scaling calculated from Bray-Curtis distance. Formulas from the pasture streams were characterized by lower proportions of aromatic formulas and lower unsaturation, suggesting that the allochthonous versus autochthonous contributions of organic matter to streams were modified by pasture land use. The number of condensed aromatic structures (CAS) was higher for the forest streams, which is possibly due to the controlled burning in the forest-dominated watersheds and suggests that black carbon was mobilized from soils to streams. During 15-day biodegradation experiments, DOM from the two pasture streams was altered to a greater extent than DOM from the forest streams, with formulas with H/C and O/C ranges similar to protein (H/C = 1.5–2.2, O/C = 0.3–0.67), lipid (H/C = 1.5–2.0, O/C = 0–0.3), and unsaturated hydrocarbon (H/C = 0.7–1.5, O/C = 0–0.1) being the most bioreactive groups. Aromatic compound formulas including CAS were preferentially removed during combined light+bacterial incubations, supporting the contention that black carbon is labile to light alterations. Collectively, our data demonstrate that headwater DOM composition contains integrative information on watershed sources and processes, and the application of ESI-FTICR-MS technique offers additional insights into compound composition and reactivity unrevealed by fluorescence and stable carbon isotopic measurements.  相似文献   

17.
Over the last three decades, increased temperatures and reduced annual precipitation have resulted in significant changes in several Central European deciduous forests. These effects include changes in soil moisture content and detritus production. Within the framework of a detritus manipulation experiment carried out in an old-growth Quercetum petraea–cerris community, we examined how changes in detritus inputs affect soil moisture content and microbial activity within six treatments. CO2 release and microbial enzyme activities are known to be highly sensitive to environmental factors such as soil moisture and detritus inputs. We applied three detritus removal (No Litter, No Roots and No Input) and two detritus addition (Double Litter and Double Wood) treatments. Although the plots received the same amount of precipitation, the various detritus inputs caused significant differences in soil moisture. Treatments excluding living roots had the highest moisture levels, while the treatment excluding only aboveground detritus inputs had the lowest. CO2 release, arylsulphatase activity and saccharase activity showed significant seasonal differences with the highest values occurring in spring. Moisture content had a significant positive correlation with CO2 release, and enzyme activities of the plots were affected by the quantity and quality of detritus inputs. Arylsulphatase activity showed the strongest correlation with soil moisture content (R?=?0.62 in the control plot) followed by CO2 release (R?=?0.61) and finally saccharase activity (R?=?0.42). We observed that there was a remarkably weaker correlation between soil moisture content and the three parameters in the detritus removal treatments (R values between 0.56 and 0.13) than in the Control and detritus addition treatments (R values between 0.72 and 0.42). The correlation between the three parameters of interest and soil moisture content weakens considerably under drought conditions relative to the optimal moisture range of soil moisture content for microbial activity. If the amount of precipitation in the area continues to decrease as anticipated, then litter production and soil microbial activity may be reduced.  相似文献   

18.
克隆了非洲爪蟾的Sox1基因并研究了它在非洲爪蟾早期发育过程中的时空表达图式,比较了Sox1—3基因在发育的脑和眼中的表达图式。序列比对分析显示Sox1—3蛋白在其HMG框结构域具有高度的保守性。通过RT-PCR方法分析了Sox1基因在爪蟾早期不同发育时段的表达情况,结果显示Sox1基因从未受精卵到尾芽期均有表达,但表达强度有所差异。原位杂交结果显示,在早期卵裂阶段和囊胚期,Sox1基因主要在动物极表达;从神经板期开始,Sox1基因主要在中枢神经系统和眼原基中表达。在蝌蚪期,Sox1与Sox2、Sox3在脑部和眼睛的表达区域有所不同。对于爪蟾Sox1基因时空表达图式的研究将有助于阐明SoxB1基因家族在脊椎动物神经系统发生过程中的作用。  相似文献   

19.
神经系统信息处理的理论研究和计算结果表明,视皮层可以通过稀疏编码 (sparse coding) 模式来处理自然刺激信息.神经元群体中,单个神经元在大多数时间里没有强的脉冲发放 (时间维稀疏性,lifetime sparseness),而针对某一刺激,只有少数神经元在特定的时间内发放 (空间维稀疏性,population sparseness).从神经元放电的时间和空间模式两个方面考察了视网膜神经节细胞群体对自然刺激(电影)的编码方式,并同实验室常用的伪随机棋盘格刺激下视网膜的反应模式进行比较,分析了视网膜神经节细胞反应的稀疏性指标,并深入探讨了其内在的时间和空间特点.结果提示,视觉系统在其最初阶段——视网膜——即开始采用一种高效节能的稀疏编码方式来处理自然视觉信息,单个神经元的时间维稀疏性节省了代谢能量消耗,而群体神经元中邻近神经元的动态成组协同发放,提高了信息向突触后神经元传递的有效性.  相似文献   

20.
Because of the water-limited nature and discontinuous plant cover of shortgrass steppe, spatial patterns in ecosystem properties are influenced more by the presence or absence of plants than by plant type. However, plant type may influence temporal patterns of nutrient cycling between plant and soil. Plants having the carbon-3 (C3) or carbon-4 (C4) photosynthetic pathway differ in phenology as well as other attributes that affect nitrogen (N) cycling. We estimated net N mineralization rates and traced nitrogen-15 (15N) additions among plant and soil components during May, July, and September of 1995 in native plots of C3 plants, C4 plants, or mixtures of C3 and C4. Net N mineralization was significantly greater in C3 plots than in C4 plots during both July and September. C3 plots retained significantly more 15N in May than did mixed and C4 plots; these differences in 15N retention were due to greater 15N uptake by C3 plants than by C4 plants during May. There were no significant differences in total 15N retention among plant communities for July and September. Soil 15N was influenced more by presence or absence of plants than by type of plant; greater quantities of 15N remained in soil interspaces between plants than in soil directly under plants for July and September. Our results indicate that plant functional type (C3 versus C4) can affect both the spatial and the temporal patterns of N cycling in shortgrass steppe. Further research is necessary to determine how these intraseasonal differences translate to longer-term and coarser-scale effects of plants on N cycling, retention, and storage. Received 8 December 1997; accepted 6 May 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号