首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

2.
Both resource and disturbance controls have been invoked to explain tree persistence among grasses in savannas. Here we determine the extent to which competition for available resources restricts the rooting depth of both grasses and trees, and how this may influence nutrient cycling under an infrequently burned savanna near Darwin, Australia. We sampled fine roots <2 mm in diameter from 24 soil pits under perennial as well as annual grasses and three levels of canopy cover. The relative proportion of C3 (trees) and C4 (grasses) derived carbon in a sample was determined using mass balance calculations. Our results show that regardless of the type of grass both tree and grass roots are concentrated in the top 20 cm of the soil. While trees have greater root production and contribute more fine root biomass grass roots contribute a disproportional amount of nitrogen and carbon to the soil relative to total root biomass. We postulate that grasses maintain soil nutrient pools and provide biomass for regular fires that prevent forest trees from establishing while savanna trees, are important for increasing soil N content, cycling and mineralization rates. We put forward our ideas as a hypothesis of resource‐regulated tree–grass coexistence in tropical savannas.  相似文献   

3.
1.  We discuss a simple implicit-space model for the competition of trees and grasses in an idealized savanna environment. The model represents patch occupancy dynamics within the habitat and introduces life stage structure in the tree population, namely adults and seedlings. A tree can be out-competed by grasses only as long as it is a seedling.
2.  The model is able to predict grassland, forest, savanna and bistability between forest and grassland, depending on the different characteristics of the ecosystem, represented by the model's parameters.
3.  The inclusion of stochastic fire disturbances significantly widens the parameter range where coexistence of trees and grasses is found. At the same time, grass-fire feedback can induce bistability between forest and grassland.
4.   Synthesis . These results suggest that tree–grass coexistence in savannas can be either deterministically stable or stabilized by random disturbances, depending on prevailing environmental conditions and on the types of plant species present in the ecosystem.  相似文献   

4.
Several explanations for the persistence of tree–grass mixtures in savannas have been advanced thus far. In general, these either concentrate on competition‐based mechanisms, where niche separation with respect to limiting resources such as water lead to tree–grass coexistence, or demographic mechanisms, where factors such as fire, herbivory and rainfall variability promote tree–grass persistence through their dissimilar effects on different life‐history stages of trees. Tests of these models have been largely site‐specific, and although different models find support in empirical data from some savanna sites, enough dissenting evidence exists from others to question their validity as general mechanisms of tree–grass coexistence. This lack of consensus on determinants of savanna structure and function arises because different models: (i) focus on different demographic stages of trees, (ii) focus on different limiting factors of tree establishment, and (iii) emphasize different subsets of the potential interactions between trees and grasses. Furthermore, models differ in terms of the most basic assumptions as to whether trees or grasses are the better competitors. We believe an integration of competition‐based and demographic approaches is required if a comprehensive model that explains both coexistence and the relative productivity of the tree and grass components across the diverse savannas of the world is to emerge. As a first step towards this end, we outline a conceptual framework that integrates existing approaches and applies them explicitly to different life‐history stage of trees.  相似文献   

5.
Theoretical models of tree–grass coexistence in savannas have focused primarily on the role of resource availability and fire. It is clear that herbivores heavily impact vegetation structure in many savannas, but their role in driving tree–grass coexistence and the stability of the savanna state has received less attention. Theoretical models of tree–grass dynamics tend to treat herbivory as a constant rather than a dynamic variable, yet herbivores respond dynamically to changes in vegetation structure in addition to modifying it. In particular, many savannas host two distinct herbivore guilds, grazers and browsers, both of which have the potential to exert profound effects on tree/grass balance. For example, grazers may indirectly favor tree recruitment by suppressing the destructive effects of fire, and browsers may facilitate the expansion of grassland by reducing the competitive dominance of trees. We use a simple theoretical model to explore the role of grazer and browser dynamics on savanna vegetation structure and stability across fire and resource availability gradients. Our model suggests that herbivores may expand the range of conditions under which trees and grasses are able to stably coexist, as well as having positive reciprocal effects on their own niche spaces. In addition, we suggest that given reasonable assumptions, indirect mutualisms can arise in savannas between functional groups of herbivores because of the interplay of consumption and ecosystem feedbacks.  相似文献   

6.
Savanna tree species vary in the magnitude of their response to grass competition, but the functional traits that explain this variation remain largely unknown. To address this gap, we grew seedlings of 10 savanna tree species with and without grasses in a controlled greenhouse experiment. We found strong interspecific differences in tree competitive response, which was positively related to photosynthesis rates, suggesting a trade‐off between the ability to grow well under conditions of low and high grass biomass across tree species. We also found no competitive effect of tree seedlings on grass, suggesting strong tree‐grass competitive asymmetry. Our results identify a potentially important trade‐off that enhances our ability to predict how savanna tree communities might respond to variation in grass competition.  相似文献   

7.
A popular hypothesis for tree and grass coexistence in savannas is that tree seedlings are limited by competition from grasses. However, competition may be important in favourable climatic conditions when abiotic stress is low, whereas facilitation may be more important under stressful conditions. Seasonal and inter-annual fluctuations in abiotic conditions may alter the outcome of tree–grass interactions in savanna systems and contribute to coexistence. We investigated interactions between coolibah (Eucalyptus coolabah) tree seedlings and perennial C4 grasses in semi-arid savannas in eastern Australia in contrasting seasonal conditions. In glasshouse and field experiments, we measured survival and growth of tree seedlings with different densities of C4 grasses across seasons. In warm glasshouse conditions, where water was not limiting, competition from grasses reduced tree seedling growth but did not affect tree survival. In the field, all tree seedlings died in hot dry summer conditions irrespective of grass or shade cover, whereas in winter, facilitation from grasses significantly increased tree seedling survival by ameliorating heat stress and protecting seedlings from herbivory. We demonstrated that interactions between tree seedlings and perennial grasses vary seasonally, and timing of tree germination may determine the importance of facilitation or competition in structuring savanna vegetation because of fluctuations in abiotic stress. Our finding that trees can grow and survive in a dense C4 grass sward contrasts with the common perception that grass competition limits woody plant recruitment in savannas.  相似文献   

8.
The influences of intraspecific competition on plant size inequality have been well documented, but interspecific effects on this topic remain little understood. Here we examined the effects of canopy shading and fine roots of the trees (Elaeagnus angustifolia) on size inequality of the grasses (Achnatherum splendens) in a temperate savanna community in northwest China. Three study plots of 400 m2 were divided into 4-m2 quadrats, within each of which (1) canopy shading was quantified by modeling cumulative direct solar radiation (CDSR) and (2) the root effect was quantified using an empirical relationship between tree fine root density (TFRD) and relative distance to tree bases. Morphological traits were measured to represent grass size. Redundancy analysis (RDA) was conducted to examine the relative influences of grass density, CDSR and TFRD on the coefficient of variation of grass size. Results showed that no significant correlation occurred between grass density and grass size inequality. Both CDSR and TFRD had significant negative correlations with grass size inequality, suggesting that canopy shading and the presence of fine roots of trees can, respectively, increase and reduce grass size inequality. Canopy shading and TFRD played competitive roles in determining grass size inequality, where the root effect was a stronger factor than canopy shading. The tree effects can substantially alter the intensity of water stress. In response, size inequality of the grasses could be influenced through size-specific growth/mortality and slowed size divergence. These mechanisms could operate together in the savanna community.  相似文献   

9.
10.
Aim It has been proposed that, in tropical savannas, trees deploy their leaves earlier in the growing season and grasses deploy their leaves later. This hypothesis implies a mechanism that facilitates the coexistence of trees and grasses in savannas. If true, this hypothesis would also allow algorithms to use differences in the phenological timing of grass and tree leaves to partition the relative contribution of grasses and trees to net primary production. In this study we examine whether a temporal niche separation between grasses and trees exists in savanna. Location A semi‐arid, subtropical savanna, Kruger National Park, South Africa. Methods We use a multi‐spectral camera to track through an entire growing season the normalized difference vegetation index (NDVI) of individual canopies of grasses and trees at eight sites arranged along a precipitation and temperature gradient. Results Among trees, we identified two distinct phenological syndromes: an early flushing syndrome and a late‐flushing syndrome. Leaf flush in the tree strategies appears to pre‐empt rainfall, whereas grass leaf flush follows the rain. The growing season of trees is 20 (late‐flushing trees) to 27 (early flushing trees) days longer than that of the grasses. Main conclusions We show that grasses and trees have different leaf deployment strategies. Trees deployed leaves at lower temperatures than grasses and retained them for longer at the end of the growing season. The timing of the increase in NDVI is, however, similar between grasses and late‐flushing trees and this complicates the separation of grass and tree signals from multi‐spectral satellite imagery.  相似文献   

11.
Traditional explanations of tree-grass coexistence in African savannas are based on competition between these growth forms or demographic bottlenecks of trees maintained by fire or mammalian browsers. Perturbation of their “balance” may result in an alternate system state of woody encroachment. Invertebrate herbivory has never been offered as an explanation. We developed a consumer-resource model which illustrated that annual irruptions of a lepidopteran (Imbrasia belina), known as mopane worm, can determine the tree-grass balance of semi-arid Colophospermum mopane savanna in southern Africa. Model performance was sensitive to the abundance, hence mortality, of mopane worms, owing to their complete defoliation of tree leaf biomass resulting in altered competitive relations between trees and grasses. Invertebrate herbivores have been recognized in other systems as agents for effecting a state change of host tree populations; this modeling study offers a first indication of such a role for the well-researched tree-grass relations of African savannas.  相似文献   

12.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

13.
Riginos C  Young TP 《Oecologia》2007,153(4):985-995
Plant–plant interactions can be a complex mixture of positive and negative interactions, with the net outcome depending on abiotic and community contexts. In savanna systems, the effects of large herbivores on tree–grass interactions have rarely been studied experimentally, though these herbivores are major players in these systems. In African savannas, trees often become more abundant under heavy cattle grazing but less abundant in wildlife preserves. Woody encroachment where cattle have replaced wild herbivores may be caused by a shift in the competitive balance between trees and grasses. Here we report the results of an experiment designed to quantify the positive, negative, and net effects of grasses, wild herbivores, and cattle on Acacia saplings in a Kenyan savanna. Acacia drepanolobium saplings under four long-term herbivore regimes (wild herbivores, cattle, cattle + wild herbivores, and no large herbivores) were cleared of surrounding grass or left with the surrounding grass intact. After two years, grass-removal saplings exhibited 86% more browse damage than control saplings, suggesting that grass benefited saplings by protecting them from herbivory. However, the negative effect of grass on saplings was far greater; grass-removal trees accrued more than twice the total stem length of control trees. Where wild herbivores were present, saplings were browsed more and produced more new stem growth. Thus, the net effect of wild herbivores was positive, possibly due to the indirect effects of lower competitor tree density in areas accessible to elephants. Additionally, colonization of saplings by symbiotic ants tracked growth patterns, and colonized saplings experienced lower rates of browse damage. These results suggest that savanna tree growth and woody encroachment cannot be predicted by grass cover or herbivore type alone. Rather, tree growth appears to depend on a variety of factors that may be acting together or antagonistically at different stages of the tree’s life cycle.  相似文献   

14.
Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants <1-m tall) and shrub and tree layer (woody plants >1-m tall), in the Brazilian cerrado over a range of tree densities from open shrub savanna to closed woodland through the annual cycle. During the dry season, soil water potential was strongly and positively correlated with grass LAI, and less strongly with tree and shrub LAI. By the end of the dry season, LAI of grasses, groundlayer dicots and trees declined to 28, 60, and 68% of mean wet-season values, respectively. We compared the data to remotely sensed vegetation indices, finding that field measurements were more strongly correlated to the enhanced vegetation index (EVI, r 2=0.71) than to the normalized difference vegetation index (NDVI, r 2=0.49). Although the latter has been more widely used in quantifying leaf dynamics of tropical savannas, EVI appears better suited for this purpose. Our ground-based measurements demonstrate that groundlayer LAI declines with increasing tree density across sites, with savanna grasses being excluded at a tree LAI of approximately 3.3. LAI averaged 4.2 in nearby gallery (riparian) forest, so savanna grasses were absent, thereby greatly reducing fire risk and permitting survival of fire-sensitive forest tree species. Although edaphic conditions may partly explain the larger tree LAI of forests, relative to savanna, biological differences between savanna and forest tree species play an important role. Overall, forest tree species had 48% greater LAI than congeneric savanna trees under similar growing conditions. Savanna and forest species play distinct roles in the structure and dynamics of savanna–forest boundaries, contributing to the differences in fire regimes, microclimate, and nutrient cycling between savanna and forest ecosystems.  相似文献   

15.
Question: Woody plant and grass interactions in savannas have frequently been studied from the perspective of the response of one growth form on the other but seldom evaluated as two‐way interactions. What causes woody plant encroachment in semi‐arid savannas and what are the competitive responses of tree seedlings and grasses on rocky and sandy substrates? Methods: In this greenhouse study, we investigated the influence of substrate and grazing on responses to interspecific competition by tree seedlings and grasses. We measured competitive/facilitative responses on biomass and nutrient status of tree seedlings and grasses grown together. Results: Interspecific competition suppressed growth of trees and grasses. Tree seedlings and uncut grass accumulated double the biomass when grown without competition relative to when they competed. Competitive responses varied on different substrates. Grass biomass on rocky substrate showed no response to tree competition, but appeared to be facilitated by trees on sandy substrate. Grass clipping resulted in higher tree seedling biomass on rocky substrate, but not on sandy substrate. There was a positive response of grass nutrient status to competition from tree seedlings. Conclusion: Selective grass herbivory in the absence of browsing or suppression of shade‐intolerant grasses by trees are commonly cited reasons behind bush encroachment in savannas. We show that grazing may confer a competitive advantage to tree seedlings and promote bush encroachment more readily on rocky substrates. This may be due to the imposed sharing of the soil depth niche on rocky substrates, whereas possible niche separation on sandy substrates minimizes the advantage conferred by reduced competition.  相似文献   

16.
A classic problem in coexistence theory is how grasses and trees coexist in savannas. A popular deterministic model of savannas, the rooting niche separation model, is based on an assumption that is not empirically supported in many savannas. Alternative models that do not rely on the rooting niche assumption invoke intricate stochastic mechanisms that limit their attractiveness as general models of savannas. In this article we develop an alternative deterministic model of grass-tree interactions and use it to analyze the conditions under which grass-tree coexistence is possible. The novel feature of this model is that it partitions aboveground and belowground competition and simulates the fact that fire and herbivory remove only aboveground biomass. The model predicts that stable coexistence of grasses and trees is possible, even when grasses and trees do not have separate rooting niches. We show that when aboveground competition is intense, grasses can be excluded by trees; under such conditions, fire can prevent grasses from exclusion and induce a stable savanna state. The model provides a general framework for exploring the interactive effects of competition, herbivory, and fire on savanna systems.  相似文献   

17.
Niall P. Hanan 《Biotropica》2012,44(2):189-196
This paper examines the feasibility of applying self‐thinning concepts to savannas and how competition with herbaceous vegetation may modify self‐thinning patterns among woody plants in these ecosystems. Competition among woody plants has seldom been invoked as a major explanation for the persistence of herbaceous vegetation in mixed tree–grass ecosystems. On the contrary, the primary resource‐based explanations for tree–grass coexistence are based on tree–grass competition (niche‐separation) that assumes that trees are inferior competitors unless deeper rooting depths provide them exclusive access to water. Alternative nonresource‐based hypotheses postulate that trees are the better competitors, but that tree populations are suppressed by mortality related to fire, herbivores, and other disturbances. If self‐thinning of woody plants can be detected in savannas, stronger evidence for resource‐limitation and competitive interactions among woody plants would suggest that the primary models of savannas need to be adjusted. We present data from savanna sites in South Africa to suggest that self‐thinning among woody plants can be detected in low‐disturbance situations, while also showing signs that juvenile trees, more so than adults, are suppressed when growing with herbaceous vegetation in these ecosystems. This finding we suggest is evidence for size‐asymmetric competition in savannas.  相似文献   

18.
  1. Deep roots have long been thought to allow trees to coexist with shallow‐rooted grasses. However, data demonstrating how root distributions affect water uptake and niche partitioning are uncommon.
  2. We describe tree and grass root distributions using a depth‐specific tracer experiment six times over two years in a subtropical savanna, Kruger National Park, South Africa. These point‐in‐time measurements were then used in a soil water flow model to simulate continuous water uptake by depth and plant growth form (trees and grasses) across two growing seasons. This allowed estimates of the total amount of water a root distribution could absorb as well as the amount of water a root distribution could absorb in excess of the other rooting distribution (i.e., unique hydrological niche).
  3. Most active tree and grass roots were in shallow soils: The mean depth of water uptake was 22 cm for trees and 17 cm for grasses. Slightly deeper rooting distributions provided trees with 5% more soil water than the grasses in a drier season, but 13% less water in a wetter season. Small differences also provided each rooting distribution (tree or grass) with unique hydrological niches of 4 to 13 mm water.
  4. The effect of rooting distributions has long been inferred. By quantifying the depth and timing of water uptake, we demonstrated how even small differences in rooting distributions can provide plants with resource niches that can contribute to species coexistence. Differences in total water uptake and unique hydrological niche sizes were small in this system, but they indicated that tradeoffs in rooting strategies can be expected to contribute to tree and grass coexistence because 1) competitive advantages change over time and 2) plant growth forms always have access to a soil resource pool that is not available to the other plant growth form.
  相似文献   

19.
Ungulate herbivores play a prominent role in maintaining the tree–grass balance in African savannas. Their top‐down role through selective feeding on either trees or grasses is well studied, but their bottom‐up role through deposition of nutrients in dung and urine has been overlooked. Here, we propose a novel concept of savanna ecosystem functioning in which the balance between trees and grasses is maintained through stoichiometric differences in dung of herbivores that feed on them. We describe a framework in which N2‐fixing trees and grasses, as well as ungulate browsing and grazing herbivores, occupy opposite positions in an interconnected cycle of processes. The framework makes the testable assumption that the differences in dung N:P ratio among browsers and grazers are large enough to influence competitive interactions between N2‐fixing trees and grasses. Other key elements of our concept are supported with field data from a Kenyan savanna.  相似文献   

20.
Laris  P.  Yang  L.  Dembele  F.  Rodrigue  C. M. 《Plant Ecology》2021,222(7):861-875
Plant Ecology - Trees and grasses compete for space in savanna landscapes where fire also suppresses trees, maintaining a lower tree/grass ratio than precipitation levels can support. While the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号