首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the impacts of coastal settlements to estuaries, nutrient pollution is often singled out as a leading cause of modification to the ecological communities of soft sediments. Through sampling of 48 sites, distributed among 16 estuaries of New South Wales, Australia, we tested the hypotheses that (1) anthropogenic nutrient loads would be a better predictor of macrofaunal communities than estuarine geomorphology or local sediment characteristics; and (2) local environmental context, as determined largely by sediment characteristics, would modify the relationship between nutrient loading and community composition. Contrary to the hypothesis, multivariate multiple regression analyses revealed that sediment grain size was the best predictor of macrofaunal assemblage composition. When samples were stratified according to median grain size, relationships between faunal communities and nitrogen loading and latitude emerged, but only among estuaries with sandier sediments. In these estuaries, capitellid and nereid polychaetes and chironomid larvae were the taxa that showed the strongest correlations with nutrient loading. Overall, this study failed to provide evidence of a differential relationship between diffuse nutrient enrichment and benthic macrofauna across a gradient of 7° of latitude and 4°C temperature. Nevertheless, as human population growth continues to place increasing pressure on southeast Australian estuaries, manipulative field studies examining when and where nutrient loading will lead to significant changes in estuarine community structure are needed.  相似文献   

2.
The relative contribution of different soil organism groups to nutrient cycling has been quantified for a number of ecosystems. Some functions, particularly within the N-cycle, are carried out by very specific organisms. Others, including those of decomposition and nutrient release from organic inputs are, however, mediated by a diverse group of bacteria, protozoa, fungi and invertebrate animals. Many authors have hypothesized that there is a high degree of equivalence and flexibility in function within this decomposer community and thence a substantial extent of redundancy in species richness and resilience in functional capacity. Three case studies are presented to examine the relationship between soil biodiversity and nitrogen cycling under global change in ecosystem types from three latitudes, i.e. tundra, temperate grassland and tropical rainforest. In all three ecosystems evidence exists for the potential impact of global change factors (temperature change, CO2 enrichment, land-use-change) on the composition and diversity of the soil community as well as on various aspects of the nitrogen and other cycles. There is, however, very little unequivocal evidence of direct causal linkage between species richness and nutrient cycling efficiency. Most of the changes detected are shifts in the influence of major functional groups of the soil biota (e.g. between microflora and fauna in decomposition). There seem to be few data, however, from which to judge the significance of changes in diversity within functional groups. Nonetheless the soil biota are hypothesized to be a sensitive link between plant detritus and the availability of nutrients to plant uptake. Any factors affecting the quantity or quality of plant detritus is likely to change this link. Rigorous experimentation on the relationships between soil species richness and the regulation or resilience of nutrient cycles under global change thus remains a high priority.  相似文献   

3.
The biodiversity–ecosystem functioning (B–EF) relationship has become of main interest in the last few decades, mostly because of the worldwide increase in species extinctions. However, most of these studies only consider species within single size‐class or trophic level, thereby most likely underestimating ecosystem complexity. To reach more realistic scenarios, we assessed the role of meiofauna (lower size‐class level) on the relationship between macrofaunal biodiversity and multiple benthic ecosystem properties. Experiments took place under controlled conditions using three macrofaunal species (Alitta (formerly Nereis) virens, Macoma balthica and Mya arenaria). A total of eight combinations of zero to three functionally different macrofaunal species were maintained in microcosms for 34 days in either the presence or absence of a different size‐class grouping (a meiofaunal mixture). The organic matter content and bacterial abundance in sediments and the oxygen and nutrient (NH4+, NOx?, PO43?) fluxes across the sediment‐water interface were measured and used as proxies of ecosystem properties. Overall, macrofaunal species richness did not modify any of the measured properties; however, we observed changes associated to the presence of A. virens and M. balthica. This study also revealed a strong impact of the presence of meiofauna on ecosystem properties. They changed interactions between macrofaunal species, which led to modifications in the ecosystem properties. Thus, even if this size‐class group has been poorly considered in previous studies, this experiment suggests that future studies should consider the meiofauna with greater attention, particularly in the context of B–EF.  相似文献   

4.
Degradation of ecological resources by large-scale disturbances highlights the need to demonstrate biological properties that increase resistance to change and promote the resilience of ecosystem regimes. Coastal eutrophication is a global-scale disturbance that drives ecosystem change by increasing primary production and favouring ephemeral and bloom-forming life-forms. Recent synthesis indicates that consumption processes increase the resistance of coastal communities to nutrient loading by controlling the responses of ephemeral macroalgae. Here we suggest a similar ecological function for canopy cover by demonstrating that the presence of a canopy species modifies both resource and consumer control of bloom-forming algae associated with nutrient enrichment. We tested effects of canopy presence on the interaction between consumer and resource control, by field-manipulations of a dominant canopy forming seaweed ( Fucus vesiculosus ), grazer presence (dominated by the gastropod Littorina littorea ) and nutrient enrichment (common agricultural NPK fertilizer). Canopy cover and grazers jointly controlled strong increases of ephemeral bloom-forming algae (dominated by Ulva spp) from nutrient enrichment; nutrients increased ephemeral recruitment almost 10-fold, but only in the absence of both grazers and canopy cover. Recruitment success of the canopy-forming seaweed itself decreased additively with 56.1, 71.3 and 50.5% from independent effects of canopy cover, grazers and nutrient enrichment, respectively. A meta-analysis of nine nutrient enrichment experiments including seaweed, seagrass and stream communities, showed that in the presence of canopies average nutrient effects were reduced by more than 90% compared to without canopies. This corroborates the generality of our finding that dominating canopy species are important for aquatic ecosystems by increasing community resistance to the propagation of nutrient effects.  相似文献   

5.
毛庆功  鲁显楷  陈浩  莫江明 《生态学报》2015,35(17):5884-5897
人类活动的加剧改变了陆地生态系统矿质元素(如氮、磷、钾等)循环的速度和方向,并且对生态系统的结构和功能也产生重要影响。如今,矿质元素输入量的改变及其产生的后续效应对陆地生态系统生物多样性的影响备受学者们的关注。从4个方面综述了全球氮沉降背景下主要矿质元素输入的改变对陆地植物多样性的影响及其机理:1)矿质营养元素限制的概念、确定方法以及与植物多样性的耦合关系;2)概述了氮、磷、钾等主要矿质元素输入对陆地植物多样性的影响:主要表现为负面效应;3)探讨了矿质元素输入影响植物多样性的可能机制,包括生态系统水平上的机制(如竞争排斥、酸化铝毒、物种入侵、同质性假说,间接诱导机制等)和植物个体水平上的机制(如元素失衡和环境敏感性增加等);4)根据目前研究现状,指出了已有研究的局限性,分析了未来可能的研究方向和重点。  相似文献   

6.
陈秋阳  赵彬洁  袁洁  张健  谭香  张全发 《生态学报》2018,38(15):5566-5576
河流生态系统受到人类活动例如河岸带森林植被毁损和农业活动施肥等的干扰日益加剧,而这些活动使河流接收的光照增多、河流的氮磷营养盐浓度增加。微生物的反硝化作用是河流去除氮的有效途径。在汉江的一级支流金水河上游核心保护区内选取6条溪流开展野外控制实验,利用营养添加模拟河流中营养的增加,遮盖河面来模拟源头溪流的隐蔽状态,来研究河流沉积物中微生物的反硝化作用对光照和营养改变的响应,并利用高通量测序(Mi Seq)技术研究在两种处理下河流沉积物中nir S型反硝化细菌的群落结构变化。结果显示:营养元素添加促进了沉积物的反硝化活性,河面遮盖抑制了沉积物的反硝化活性。营养添加和遮盖两种处理均降低了控制实验区域内脱氯单胞菌属(优势菌属)的相对丰度,同时也降低了该区域nir S型反硝化菌群落的Chao多样性。本研究初步证实了光照增加和河流的营养增加提高了河流沉积物反硝化活性,并为提高河流的脱氮能力提供科学依据。  相似文献   

7.
Nutrient exchange mutualisms between phototrophs and heterotrophs, such as plants and mycorrhizal fungi or symbiotic algae and corals, underpin the functioning of many ecosystems. These relationships structure communities, promote biodiversity and help maintain food security. Nutrient loading may destabilise these mutualisms by altering the costs and benefits each partner incurs from interacting. Using meta‐analyses, we show a near ubiquitous decoupling in mutualism performance across terrestrial and marine environments in which phototrophs benefit from enrichment at the expense of their heterotrophic partners. Importantly, heterotroph identity, their dependence on phototroph‐derived C and the type of nutrient enrichment (e.g. nitrogen vs. phosphorus) mediated the responses of different mutualisms to enrichment. Nutrient‐driven changes in mutualism performance may alter community organisation and ecosystem processes and increase costs of food production. Consequently, the decoupling of nutrient exchange mutualisms via alterations of the world's nitrogen and phosphorus cycles may represent an emerging threat of global change.  相似文献   

8.
We discuss the mechanisms leading to nutrient limitation in tropical marine systems, with particular emphasis on nitrogen cycling in Caribbean ecosystems. We then explore how accelerated nutrient cycling from human activities is affecting these systems.Both nitrogen and phosphorus exert substantial influence on biological productivity and structure of tropical marine ecosystems. Offshore planktonic communities are largely nitrogen limited while nearshore ecosystems are largely phosphorus limited. For phosphorus, the ability of sediment to adsorb and store phosphorus is probably greater for tropical carbonate sediments than for most nearshore sediments in temperate coastal systems. However, the ability of tropical carbonate sediments to take up phosphorus can become saturated as phosphorus loading from human sources increases. The nature of the sediment, the mixing rate between nutrient-laden runoff waters and nutrient-poor oceanic waters and the degree of interaction of these water masses with the sediment will probably control the dynamics of this transition.Nearshore tropical marine ecosystems function differently from their temperate counterparts where coupled nitrification/denitrification serves as an important mechanism for nitrogen depuration. In contrast, nearshore tropical ecosystems are more susceptible to nitrogen loading as depurative capacity of the microbial communities is limited by the fragility of the nitrification link. At the same time, accumulation of organic matter in nearshore carbonate sediments appears to impair their capacity for phosphorus immobilization. In the absence of depurative mechanisms for either phosphorus or nitrogen, limitation for both these nutrients is alleviated and continued nutrient loading fuels the proliferation of nuisance algae.  相似文献   

9.
Denitrification efficiency [DE; (N2 − N/(DIN + N2 − N) × 100%)] as an indicator of change associated with nutrient over-enrichment was evaluated for 22 shallow coastal ecosystems in Australia. The rate of carbon decomposition (which can be considered a proxy for carbon loading) is an important control on the efficiency with which coastal sediments in depositional mud basins with low water column nitrate concentrations recycle nitrogen as N2. The relationship between DE and carbon loading is due to changes in carbon and nitrate (NO3) supply associated with sediment biocomplexity. At the DE optimum (500–1,000 μmol m−2 h−1), there is an overlap of aerobic and anaerobic respiration zones (caused primarily by the existence of anaerobic micro-niches within the oxic zone, and oxidized burrow structures penetrating into the anaerobic zone), which enhances denitrification by improving both the organic carbon and nitrate supply to denitrifiers. On either side of the DE optimum zone, there is a reduction in denitrification sites as the sediment loses its three-dimensional complexity. At low organic carbon loadings, a thick oxic zone with low macrofauna biomass exists, resulting in limited anoxic sites for denitrification, and at high carbon loadings, there is a thick anoxic zone and a resultant lack of oxygen for nitrification and associated NO3 production. We propose a trophic scheme for defining critical (sustainable) carbon loading rates and possible thresholds for shallow coastal ecosystems based on the relationship between denitrification efficiency and carbon loading for 17 of the 22 Australian coastal ecosystems. The denitrification efficiency “optimum” occurs between carbon loadings of about 50 and 100 g C m−2 year−1. Coastal managers can use this simple trophic scheme to classify the current state of their shallow coastal ecosystems and for determining what carbon loading rate is necessary to achieve any future state. Guest editors: J. H. Andersen & D. J. Conley Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark  相似文献   

10.
Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.  相似文献   

11.
Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming‐induced fertilization. In addition, we compared our measured ecosystem CO2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO2 exchange with nutrient addition. We observed declines in abundance‐weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%–50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization—over an order of magnitude or more than warming‐induced rates—significantly alter the capacity for tundra CO2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming‐related nutrient availability may impact ecosystems differently than single‐level fertilization experiments.  相似文献   

12.
13.
Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer‐reviewed papers and conducted a meta‐analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH4+ (12%) and soil total N (210%), although it decreased soil NO3? (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N2O fluxes as well as hydrological NH4+ and NO2? fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta‐analysis. Overall, this meta‐analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro‐ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro‐ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized.  相似文献   

14.
In this review of sediment denitrification in estuaries and coastal ecosystems, we examine current denitrification measurement methodologies and the dominant biogeochemical controls on denitrification rates in coastal sediments. Integrated estimates of denitrification in coastal ecosystems are confounded by methodological difficulties, a lack of systematic understanding of the effects of changing environmental conditions, and inadequate attention to spatial and temporal variability to provide both seasonal and annual rates. Recent improvements in measurement techniques involving 15 N techniques and direct N2 concentration changes appear to provide realistic rates of sediment denitrification. Controlling factors in coastal systems include concentrations of water column NO 3 , overall rates of sediment carbon metabolism, overlying water oxygen concentrations, the depth of oxygen penetration, and the presence/absence of aquatic vegetation and macrofauna. In systems experiencing environmental change, either degradation or improvement, the importance of denitrification can change. With the eutrophication of the Chesapeake Bay, the overall rates of denitrification relative to N loading terms have decreased, with factors such as loss of benthic habitat via anoxia and loss of submerged aquatic vegetation driving such effects.  相似文献   

15.
Ecosystem thresholds with hypoxia   总被引:2,自引:1,他引:1  
Hypoxia is one of the common effects of eutrophication in coastal marine ecosystems and is becoming an increasingly prevalent problem worldwide. The causes of hypoxia are associated with excess nutrient inputs from both point and non-point sources, although the response of coastal marine ecosystems is strongly modulated by physical processes such as stratification and mixing. Changes in climate, particularly temperature, may also affect the susceptibility of coastal marine ecosystems to hypoxia. Hypoxia is a particularly severe disturbance because it causes death of biota and catastrophic changes in the ecosystem. Bottom water oxygen deficiency not only influences the habitat of living resources but also the biogeochemical processes that control nutrient concentrations in the water column. Increased phosphorus fluxes from sediments into overlying waters occur with hypoxia. In addition, reductions in the ability of ecosystems to remove nitrogen through denitrification and anaerobic ammonium oxidation may be related to hypoxia and could lead to acceleration in the rate of eutrophication. Three large coastal marine ecosystems (Chesapeake Bay, Northern Gulf of Mexico, and Danish Straits) all demonstrate thresholds whereby repeated hypoxic events have led to an increase in susceptibility of further hypoxia and accelerated eutrophication. Once hypoxia occurs, reoccurrence is likely and may be difficult to reverse. Therefore, elucidating ecosystem thresholds of hypoxia and linking them to nutrient inputs are necessary for the management of coastal marine ecosystems. Finally, projected increases in warming show an increase in the susceptibility of coastal marine ecosystems to hypoxia such that hypoxia will expand. Guest editors: J. H. Andersen & D. J. Conley Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark  相似文献   

16.
Denitrifying microbial communities and denitrification in salt marsh sediments may be affected by many factors, including environmental conditions, nutrient availability, and levels of pollutants. The objective of this study was to examine how microbial community composition and denitrification enzyme activities (DEA) at a California salt marsh with high nutrient loading vary with such factors. Sediments were sampled from three elevations, each with different inundation and vegetation patterns, across 12 stations representing various salinity and nutrient conditions. Analyses included determination of cell abundance, total and denitrifier community compositions (by terminal restriction fragment length polymorphism), DEA, nutrients, and eluted metals. Total bacterial (16S rRNA) and denitrifier (nirS) community compositions and DEA were analyzed for their relationships to environmental variables and metal concentrations via multivariate direct gradient and regression analyses, respectively. Community composition and DEA were highly variable within the dynamic salt marsh system, but each was strongly affected by elevation (i.e., degree of inundation) and carbon content as well as by selected metals. Carbon content was highly related to elevation, and the relationships between DEA and carbon content were found to be elevation specific when evaluated across the entire marsh. There were also lateral gradients in the marsh, as evidenced by an even stronger association between community composition and elevation for a marsh subsystem. Lastly, though correlated with similar environmental factors and selected metals, denitrifier community composition and function appeared uncoupled in the marsh.  相似文献   

17.
Salt marshes sequester carbon at rates more than an order of magnitude greater than their terrestrial counterparts, helping to mitigate climate change. As nitrogen loading to coastal waters continues, primarily in the form of nitrate, it is unclear what effect it will have on carbon storage capacity of these highly productive systems. This uncertainty is largely driven by the dual role nitrate can play in biological processes, where it can serve as a nutrient‐stimulating primary production or a thermodynamically favorable electron acceptor fueling heterotrophic metabolism. Here, we used a controlled flow‐through reactor experiment to test the role of nitrate as an electron acceptor, and its effect on organic matter decomposition and the associated microbial community in salt marsh sediments. Organic matter decomposition significantly increased in response to nitrate, even at sediment depths typically considered resistant to decomposition. The use of isotope tracers suggests that this pattern was largely driven by stimulated denitrification. Nitrate addition also significantly altered the microbial community and decreased alpha diversity, selecting for taxa belonging to groups known to reduce nitrate and oxidize more complex forms of organic matter. Fourier Transform‐Infrared Spectroscopy further supported these results, suggesting that nitrate facilitated decomposition of complex organic matter compounds into more bioavailable forms. Taken together, these results suggest the existence of organic matter pools that only become accessible with nitrate and would otherwise remain stabilized in the sediment. The existence of such pools could have important implications for carbon storage, since greater decomposition rates as N loading increases may result in less overall burial of organic‐rich sediment. Given the extent of nitrogen loading along our coastlines, it is imperative that we better understand the resilience of salt marsh systems to nutrient enrichment, especially if we hope to rely on salt marshes, and other blue carbon systems, for long‐term carbon storage.  相似文献   

18.
In the global nitrogen cycle, bacterial denitrification is recognized as the only quantitatively important process that converts fixed nitrogen to atmospheric nitrogen gas, N2, thereby influencing many aspects of ecosystem function and global biogeochemistry. However, we have found that a process novel to the marine nitrogen cycle, anaerobic oxidation of ammonium coupled to nitrate reduction, contributes substantially to N2 production in marine sediments. Incubations with 15N-labeled nitrate or ammonium demonstrated that during this process, N2 is formed through one-to-one pairing of nitrogen from nitrate and ammonium, which clearly separates the process from denitrification. Nitrite, which accumulated transiently, was likely the oxidant for ammonium, and the process is thus similar to the anammox process known from wastewater bioreactors. Anaerobic ammonium oxidation accounted for 24 and 67% of the total N2 production at two typical continental shelf sites, whereas it was detectable but insignificant relative to denitrification in a eutrophic coastal bay. However, rates of anaerobic ammonium oxidation were higher in the coastal sediment than at the deepest site and the variability in the relative contribution to N2 production between sites was related to large differences in rates of denitrification. Thus, the relative importance of anaerobic ammonium oxidation and denitrification in N2 production appears to be regulated by the availability of their reduced substrates. By shunting nitrogen directly from ammonium to N2, anaerobic ammonium oxidation promotes the removal of fixed nitrogen in the oceans. The process can explain ammonium deficiencies in anoxic waters and sediments, and it may contribute significantly to oceanic nitrogen budgets.  相似文献   

19.
Coastal marine systems are currently subject to a variety of anthropogenic and climate-change-induced pressures. An important challenge is to predict how marine sediment communities and benthic biogeochemical cycling will be affected by these ongoing changes. To this end, it is of paramount importance to first better understand the natural variability in coastal benthic biogeochemical cycling and how this is influenced by local environmental conditions and faunal biodiversity. Here, we studied sedimentary biogeochemical cycling at ten coastal stations in the Southern North Sea on a monthly basis from February to October 2011. We explored the spatio-temporal variability in oxygen consumption, dissolved inorganic nitrogen and alkalinity fluxes, and estimated rates of nitrification and denitrification from a mass budget. In a next step, we statistically modeled their relation with environmental variables and structural and functional macrobenthic community characteristics. Our results show that the cohesive, muddy sediments were poor in functional macrobenthic diversity and displayed intermediate oxygen consumption rates, but the highest ammonium effluxes. These muddy sites also showed an elevated alkalinity release from the sediment, which can be explained by the elevated rate of anaerobic processes taking place. Fine sandy sediments were rich in functional macrobenthic diversity and had the maximum oxygen consumption and estimated denitrification rates. Permeable sediments were also poor in macrobenthic functional diversity and showed the lowest oxygen consumption rates and only small fluxes of ammonium and alkalinity. Macrobenthic functional biodiversity as estimated from bioturbation potential appeared a better variable than macrobenthic density in explaining oxygen consumption, ammonium and alkalinity fluxes, and estimated denitrification. However, this importance of functional biodiversity was manifested particularly in fine sandy sediments, to a lesser account in permeable sediments, but not in muddy sediments. The strong relationship between macrobenthic functional biodiversity and biogeochemical cycling in fine sandy sediments implies that a future loss of macrobenthic functional diversity will have important repercussions for benthic ecosystem functioning.  相似文献   

20.

Background

Bioturbators affect multiple biogeochemical interactions and have been suggested as suitable candidates to mitigate organic matter loading in marine sediments. However, predicting the effects of bioturbators at an ecosystem level can be difficult due to their complex positive and negative interactions with the microbial community.

Methodology/Principal Findings

We quantified the effects of deposit-feeding sea cucumbers on benthic algal biomass (microphytobenthos, MPB), bacterial abundance, and the sediment–seawater exchange of dissolved oxygen and nutrients. The sea cucumbers increased the efflux of inorganic nitrogen (ammonium, NH4 +) from organically enriched sediments, which stimulated algal productivity. Grazing by the sea cucumbers on MPB (evidenced by pheopigments), however, caused a net negative effect on primary producer biomass and total oxygen production. Further, there was an increased abundance of bacteria in sediment with sea cucumbers, suggesting facilitation. The sea cucumbers increased the ratio of oxygen consumption to production in surface sediment by shifting the microbial balance from producers to decomposers. This shift explains the increased efflux of inorganic nitrogen and concordant reduction in organic matter content in sediment with bioturbators.

Conclusions/Significance

Our study demonstrates the functional role and potential of sea cucumbers to ameliorate some of the adverse effects of organic matter enrichment in coastal ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号