首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon Quality and Stocks in Organic Horizons in Boreal Forest Soils   总被引:1,自引:0,他引:1  
We investigated the mechanisms that determine the quality and quantity of organic carbon (C) stocks in boreal forest soils by analyzing both qualitative and quantitative changes in the organic fractions in the soil organic matter (OM) in a vertical gradient in the decomposition continuum of the organic horizon [litter layer (L), fermentation layer (F), and humus layer (H)] in forest soils using a sequential fractionation method at two forest types along a climatic gradient in Finland. We predicted that the concentrations of water-soluble (WSE) and non-polar (NPE) extractives should decrease and those of the acid-soluble (AS) fraction and acid-insoluble residue (AIR) should increase from the L to the F, and from the F to the H layers, but the C/N ratio of soil OM should stay constant after reaching the critical quotient. We also predicted that the AIR concentrations should be higher in the south than north boreal, and in sub-xeric than mesic forests. Consistent with our hypothesis, the concentrations of WSE and NPE fractions decreased and concentrations of AIR increased in the vertical soil gradient. The highest concentrations of the AS fraction were found in the F layer. The C/N ratio was lowest in the F layer, and the highest in the H layer, indicating that soil OM is depleted in N in relation to C along the vertical soil gradient. Concentrations of WSE and NPE were lower, and concentrations of AIR were higher in the south than in north boreal forests, which is in agreement with our hypothesis that higher soil temperatures may enhance accumulation of slowly decomposable OM in the soil. The concentrations of AIR were higher in the sub-xeric than mesic forests. Contrary to our expectations, however, the differences in the chemical quality in soil OM between the site types were amplified from the L to the H layer. The size of the C storage was significantly larger in south than north boreal sites, and larger in the mesic than in the sub-xeric sites.  相似文献   

2.
Permafrost soils are a significant global store of carbon (C) with the potential to become a large C source to the atmosphere. Climate change is causing permafrost to thaw, which can affect primary production and decomposition, therefore affecting ecosystem C balance. To understand future responses of permafrost soils to climate change, we inventoried current soil C stocks, investigated ∆14C, C:N, δ13C, and δ15N depth profiles, modeled soil C accumulation rates, and calculated decadal net ecosystem production (NEP) in subarctic tundra soils undergoing minimal, moderate, and extensive permafrost thaw near Eight Mile Lake (EML) in Healy, Alaska. We modeled decadal and millennial soil C inputs, decomposition constants, and C accumulation rates by plotting cumulative C inventories against C ages based on radiocarbon dating of surface and deep soils, respectively. Soil C stocks at EML were substantial, over 50 kg C m−2 in the top meter, and did not differ much among sites. Carbon to nitrogen ratio, δ13C, and δ15N depth profiles indicated most of the decomposition occurred within the organic soil horizon and practically ceased in deeper, frozen horizons. The average C accumulation rate for EML surface soils was 25.8 g C m−2 y−1 and the rate for the deep soil accumulation was 2.3 g C m−2 y−1, indicating these systems have been C sinks throughout the Holocene. Decadal net ecosystem production averaged 14.4 g C m−2 y−1. However, the shape of decadal C accumulation curves, combined with recent annual NEP measurements, indicates soil C accumulation has halted and the ecosystem may be becoming a C source. Thus, the net impact of climate warming on tundra ecosystem C balance includes not only becoming a C source but also the loss of C uptake capacity these systems have provided over the past ten thousand years.  相似文献   

3.
We assessed how consequences of future land-use change may affect size and spatial shifts of C stocks under three potential trends in policy—(a) business-as-usual: continuation of land-use trends observed during the past 15 years; (b) extensification: full extensification of open-land; and (c) liberalization: full reforestation potential. The build-up times for the three scenarios are estimated at 30, 80 and 100 years, respectively. Potential C-stock change rates are derived from the literature. Whereas the business-as-usual scenario would cause marginal changes of 0.5%, liberalization would provoke a 13% increase in C stocks (+62 MtC). Gains of 24% would be expected for forests (+95 MtC), whereas open-land C stock would decrease 27% (−33 MtC). Extensification would lead to a C stock decrease of 3% (−12 MtC). Whereas forest C is expected to increase 12% (+36.5 MtC) at high elevations, stocks of open-land C would decline 38.5% (−48.5 MtC). Most affected are unfavorable grasslands, which increase in area (+59%) but contribute only 14.5% to the C stocks. C sinks would amount to 0.6 MtC y−1 assuming a build-up time of 100 years for the liberalization scenario. C stocks on the current forest area are increasing by 1 MtC y−1. The maximal total C sink of 1.6 MtC might thus suffice to compensate for agricultural greenhouse gases (2004: 1.4 Mt CO2–C equivalents), but corresponds only to 11–13% of the anthropogenic greenhouse gas emission in Switzerland. Thus, even the largest of the expected terrestrial C stocks under liberalization will be small in comparison with current emissions of anthropogenic greenhouse gases.  相似文献   

4.
The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm−3) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm−3) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg−1. Higher SOC contents (320 g kg−1) were found in OPOM while MOM had the lowest SOC contents (29 g kg−1). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0–30 cm depth) account for 10.4 kg m−2, compared to 3.4 kg m−2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.  相似文献   

5.
Mediterranean semi-arid forest ecosystems are especially sensitive to external forcing. An understanding of the relationship between forest carbon (C) stock, and environmental conditions and forest structure enable prediction of the impacts of climate change on C stocks and help to define management strategies that maximize the value of forests for C mitigation. Based on the national forest inventory of Spain (1997?C2008 with 70,912 plots), we estimated the forest C stock and spatial variability in Peninsular Spain and, we determined the extent to which the observed patterns of stand C stock can be explained by structural and species richness, climate and disturbances. Spain has an average stand C stock of 45.1?Mg C/ha. Total C stock in living biomass is 621 Tg C (7.8% of the C stock of European forests). The statistical models show that structural richness, which is driven by past land use and life forest history including age, development stage, management activities, and disturbance regime, is the main predictor of stand tree C stock with larger C stocks in structurally richer stands. Richness of broadleaf species has a positive effect on both conifer and broadleaf forests, whereas richness of conifer species shows no significant or even a negative effect on C stock. Climate variables have mainly an indirect effect through structural richness but a smaller direct predictive ability when all predictors are considered. To achieve a greater standing C stock, our results suggest promoting high structural richness by managing for uneven-aged stands and favoring broadleaf over conifer species.  相似文献   

6.
The objectives of this study were to estimate changes of tree carbon (C) and soil organic carbon (SOC) stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF) in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0–1 m). The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1) with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0–0.1 m) contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded.  相似文献   

7.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

8.
The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989–1993, 1994–1998, 1999–2003, and 2004–2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change.  相似文献   

9.
Tropical forests store large amounts of carbon in tree biomass, although the environmental controls on forest carbon stocks remain poorly resolved. Emerging airborne remote sensing techniques offer a powerful approach to understand how aboveground carbon density (ACD) varies across tropical landscapes. In this study, we evaluate the accuracy of the Carnegie Airborne Observatory (CAO) Light Detection and Ranging (LiDAR) system to detect top-of-canopy tree height (TCH) and ACD across the Osa Peninsula, Costa Rica. LiDAR and field-estimated TCH and ACD were highly correlated across a wide range of forest ages and types. Top-of-canopy height (TCH) reached 67 m, and ACD surpassed 225 Mg C ha-1, indicating both that airborne CAO LiDAR-based estimates of ACD are accurate in tall, high-biomass forests and that the Osa Peninsula harbors some of the most carbon-rich forests in the Neotropics. We also examined the relative influence of lithologic, topoedaphic and climatic factors on regional patterns in ACD, which are known to influence ACD by regulating forest productivity and turnover. Analyses revealed a spatially nested set of factors controlling ACD patterns, with geologic variation explaining up to 16% of the mapped ACD variation at the regional scale, while local variation in topographic slope explained an additional 18%. Lithologic and topoedaphic factors also explained more ACD variation at 30-m than at 100-m spatial resolution, suggesting that environmental filtering depends on the spatial scale of terrain variation. Our result indicate that patterns in ACD are partially controlled by spatial variation in geologic history and geomorphic processes underpinning topographic diversity across landscapes. ACD also exhibited spatial autocorrelation, which may reflect biological processes that influence ACD, such as the assembly of species or phenotypes across the landscape, but additional research is needed to resolve how abiotic and biotic factors contribute to ACD variation across high biomass, high diversity tropical landscapes.  相似文献   

10.
20th Century Carbon Budget of Forest Soils in the Alps   总被引:2,自引:1,他引:1  
Dendrochronological studies and forest inventory surveys have reported increased growth and biospheric carbon (C) sequestration for European forests in the recent past. The potential of concomitant changes in forest soil C stocks are not accounted for in the IPCC guidelines for national greenhouse gas inventories. We developed a model-based approach to address this problem and assess the role of soils in forest C balance in the European Alps. The decomposition model FORCLIM-D was driven by long-term (that is, 1900–1985 AD) litter input scenarios constructed from forest inventory data, region-specific dendrochronological basal area indices, and time series of anthropogenic litter removal. The effect of spatial climate variability on organic matter decomposition across the case study region (Switzerland) was explicitly accounted for by constant long-term annual means of actual evapotranspiration and temperature. Uncertainties in forest development, litter removal, fine root litter input, and dynamics of forest soil C were studied by an explorative factorial sensitivity analysis. We found that forest soils contribute substantially to the biospheric C sequestration for Switzerland: Our “best estimate” yielded an increase of 0.35 Mt C/y or 0.33 t C/(ha y) in forest soils for 1985, that is, 27% of the C sequestered by forest trees (BUWAL 1994). Uncertainties regarding C accumulation in forest soils were substantial (0.11–0.58 Mt C/y) but could be reduced by estimating forest soil C stocks in the future. Whereas soils can be important for the C balance in naturally regrowing forests, their C sequestration is negligible (less than 5%) relative to anthropogenic CO2 emissions in Western Europe at present. Received 25 August 1998; accepted 17 March 1999.  相似文献   

11.
Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.  相似文献   

12.
G. M. King 《Applied microbiology》1999,65(12):5257-5264
CO, one of the most important trace gases, regulates tropospheric methane, hydroxyl radical, and ozone contents. Ten to 25% of the estimated global CO flux may be consumed by soils annually. Depth profiles for 14CO oxidation and CO concentration indicated that CO oxidation occurred primarily in surface soils and that photooxidation of soil organic matter did not necessarily contribute significantly to CO fluxes. Kinetic analyses revealed that the apparent Km was about 18 nM (17 ppm) and the Vmax was 6.9 μmol g (fresh weight)−1 h−1; the apparent Km was similar to the apparent Km for atmospheric methane consumption, but the Vmax was more than 100 times higher. Atmospheric CO oxidation responded sensitively to soil water regimes; decreases in water content in initially saturated soils resulted in increased uptake, and optimum uptake occurred at water contents of 30 to 60%. However, extended drying led to decreased uptake and net CO production. Rewetting could restore CO uptake, albeit with a pronounced hysteresis. The responses to changing temperatures indicated that the optimum temperature for net uptake was between 20 and 25°C and that there was a transition to net production at temperatures above 30°C. The responses to methyl fluoride and acetylene indicated that populations other than ammonia oxidizers and methanotrophs must be involved in forest soils. The response to acetylene was notable, since the strong initial inhibition was reversed after 12 h of incubation; in contrast, methyl fluoride did not have an inhibitory effect. Ammonium did not inhibit CO uptake; the level of nitrite inhibition was initially substantial, but nitrite inhibition was reversible over time. Nitrite inhibition appeared to occur through indirect effects based on abiological formation of NO.  相似文献   

13.
In North America, wild pigs (Sus scrofa; feral pigs, feral swine, wild boars) are a widespread exotic species capable of creating large-scale biotic and abiotic landscape perturbations. Quantification of wild pig environmental effects has been particularly problematic in northern climates, where they occur only recently as localized populations at low densities. Between 2016 and 2017, we assessed short-term (within ~2 yrs of disturbance) effects of a low-density wild pig population on forest features in the central Lower Peninsula of Michigan, USA. We identified 16 8-ha sites using global positioning system locations from 7 radio-collared wild pigs for sampling. Within each site, we conducted fine-scale assessments at 81 plots and quantified potential disturbance by wild pigs. We defined disturbance as exposure of overturned soil, often resulting from rooting behavior by wild pigs. We quantified ground cover of plants within paired 1-m2 frames at each plot, determined effects to tree regeneration using point-centered quarter sampling, and collected soil cores from each plot. We observed less percent ground cover of native herbaceous plants and lower species diversity, particularly for plants with a coefficient of conservatism ≥5, in plots disturbed by wild pigs. We did not observe an increase in colonization of exotic plants following disturbance, though the observed prevalence of exotic plants was low. Wild pigs did not select for tree species when rooting, and we did not detect any differences in regeneration of light- and heavy-seeded tree species between disturbed or undisturbed plots. Magnesium and ammonium content in soils were lower in disturbed plots, suggesting soil disturbance accelerated leaching of macronutrients, potentially altering nitrogen transformation. Our study suggested that disturbances by wild pigs, even at low densities, alters short-term native herbaceous plant diversity and soil chemistry. Thus, small-scale exclusion of wild pigs from vulnerable and rare plant communities may be warranted. © 2020 The Wildlife Society.  相似文献   

14.
Trees affect soil chemistry and nutrient availability via a broad range of processes. Effects can vary dramatically among species, whose distinctive spatial “footprints” can vary for different nutrients. Potentially overlapping effects of neighboring trees in mixed-species stands make footprint shape and interspecific interactions important: If interactions are non-additive, then not only abundance but also spatial configuration influence tree species’ effects on ecosystem properties. We used spatially explicit neighborhood-scale data on tree distributions to fit maximum likelihood models of exchangeable calcium, magnesium, and potassium in surface soils of four sites in northern hardwood forests in northwestern Connecticut, USA. The models incorporated parent material, site, and tree species or functional group configuration to predict availability of the three cations. Site had a stronger effect than species for all cations (there was no species effect for potassium), even after accounting for variation in parent material. Species’ spatial footprints extended further from the stem for calcium than magnesium, which is consistent with the relative importance of litterfall versus stemflow transfer of these nutrients. The magnitude of species effects on calcium and magnesium varied widely. Functional groups made up of species with positive or negative effects provided parsimonious models for magnesium and calcium, and the best model for calcium included a non-additive, antagonistic effect whose strength varied by site. This non-additive effect suggests that the degree of intermingling of tree species from negative- and positive-effect functional groups may influence stand-level availability of calcium, a key nutrient for forest health in these ecosystems.  相似文献   

15.
Carbon mineralization was examined in Lakehurst and Atsion sands collected from the New Jersey Pinelands and in Pahokee muck from the Everglades Agricultural Area. Objectives were (i) to estimate the carbon mineralization capacities of acidic, xeric Pinelands soils in the absence of exogenously supplied carbon substrate (nonamended carbon mineralization rate) and to compare these activities with those of agriculturally developed pahokee muck, and (ii) to measure the capacity for increased carbon mineralization in the soils after carbon amendment. In most cases, nonamended carbon mineralization rates were greater in samples of the acid- and moisture-stressed Pinelands soils than in Pahokee muck collected from a fallow (bare) field. Carbon amendment resulted in augmented catabolic activity in Pahokee muck samples, suggesting that the microbial community was carbon limited in this soil. With many of the substrates, no stimulation of the catabolic rate was detected after amendment of Pinelands soils. This was documented by the observation that amendment of Pahokee muck with an amino acid mixture, glucose, or acetate resulted in a 3.0-, 3.9-, or 10.5-fold stimulation of catabolic activity, respectively, for the added substrate. In contrast, amendment of the Pinelands soils resulted in increased amino acid and acetate catabolic rates in Lakehurst sand and increased acetate metabolism only in Atsion sand. Other activities were unchanged. The increased glucose respiration rates resulted from stimulation of existing microbial activity rather than from microbial proliferation since no change in the microbial growth rate, as estimated by the rate of incorporation of 14C-labeled acetate into cell membranes, occurred after glucose amendment of the soils. A stimulation of microbial growth rate was recorded with glucose-amended Lakehurst sand collected from the B horizon.  相似文献   

16.
Old-growth forests are important stores for carbon as they may accumulate C for centuries. The alteration of biomass and soil carbon pools across the development stages of a forest dynamics cycle has rarely been quantified. We studied the above- and belowground C stocks in the five forest development stages (regeneration to decay stage) of a montane spruce (Picea abies) forest of the northern German Harz Mountains, one of Central Europe’s few forests where the natural forest dynamics have not been disturbed by man for several centuries. The over-mature and decay stages had the largest total (up to 480 Mg C ha?1) and aboveground biomass carbon pools (200 Mg C ha?1) with biomass C stored in dead wood in the decay stage. The soil C pool (220–275 Mg C ha?1, 0–60 cm) was two to three times larger than in temperate lowland spruce forests and remained invariant across the forest dynamics cycle. On the landscape level, taking into account the frequency of the five forest development stages, the total carbon pool was approximately 420 Mg C ha?1. The results evidence the high significance of over-mature and decaying stages of temperate mountain forests not only for conserving specialized forest organisms but also for their large carbon storage potential.  相似文献   

17.
Ecosystem stores of carbon are a key component in the global carbon cycle. Many studies have examined the impact of climate change on ecosystem carbon storage, but few have investigated the impact of land-use change and herbivory. However, land-use change is a major aspect of environmental change, and livestock grazing is the most extensive land use globally. In this study, we combine a grazing exclosure experiment and a natural experiment to test the impact of grazer exclusion on vegetation dynamics and ecosystem carbon stores in the short term (12-year exclosures), and the long term (islands inaccessible to livestock), in a heavily grazed mountain region in Norway. Following long-term absence of sheep, birch forest was present. The grazing-resistant grass Nardus stricta, dominated under long-term grazing, whilst the selected grass Deschampsia flexuosa and herb species dominated the vegetation layer in the long-term absence of sheep. The established birch forest led to vegetation carbon stocks being higher on the islands (0.56 kg C m?2 on the islands compared to 0.18 kg C m?2 where grazed) and no difference in soil carbon stocks. In the short-term exclusion of sheep, there were minor differences in carbon stocks reflecting the longer term changes. These results show that aboveground carbon stocks are higher in the long-term absence of sheep than in the continual presence of high sheep densities, associated with a vegetation state change between tundra and forest. The reduction of herbivore populations can facilitate forest establishment and increase aboveground carbon stocks, however, the sequestration rate is low.  相似文献   

18.
森林是生态系统的重要组成部分,是改善全球气候变暖趋势的机体,森林的固碳能力越来越受到重视,而研究森林中立木的含碳量对森林生态系统量化固碳能力具有重要意义。本文基于大兴安岭44株天然落叶松解析木实测数据和各器官碳密度样木数据,借鉴相容性生物量模型的思想来研究相容性立木含碳量模型,基于基础模型y=aDb和y=a(D2H)b,利用非线性度量误差模型系统构建了总含碳量和干、枝、叶、根四个分含碳量之间相容的一元和二元立木含碳量模型。通过比较各模型的拟合优度和独立检验统计量,计算拟合优度结果显示:在一元和二元基础模型下的4个器官,树干的确定系数R2分别为0.960,0.985,都是2个模型中各器官确定系数的最高值,树枝、树叶和树根相对偏低,但均达到了85%以上,说明建立的模型可行;模型检验统计量表明:一元和二元基础模型的树干模拟效率EF值为0.904,0.951,相应的预估精度P值为80.5%,85.5%,其次是树枝模拟效率0.830,0.898,精度都在70%以上,树叶和树根预估精度偏低,其值在70%左右。综上研究结果表明:二元立木含碳量预估模型的拟合及预测精度优于一元模型。  相似文献   

19.
The impact of atmospheric N deposition on the dynamics of various carbon fractions was investigated in two Scots pine forest soils (cambisol, podzol) of Northern Germany in microcosm experiments. Total organic carbon (TOC), CO2 emission, microbial carbon (Cmic) as well as organic hot- and coldwater extractable carbon fractions (Chwe, Ccwe) were analyzed before, during, and after soil incubation in microcosms, run in three treatments: 0, +45, and +90 kg N ha−1a−1. On both sites, the N treatment showed no response to total organic carbon (TOC) contents in most of the investigated soil layers. Microbial carbon (Cmic) was significantly increased in the organic layer of both soil types by the N application. Subsequent to the N application, the CO2 emission increased in all mineral soil layers of the cambisol but remained almost unaffected in the podzol. After the N application, a remarkable increase of hotwater extractable C (Chwe) was detected for the organic layer of the cambisol but not for the podzol, whereas coldwater extractable C (Ccwe) concentrations decreased at both sites. The N application did not have a significant impact on the leachate concentrations of total organic carbon (TOC), dissolved organic carbon (DOC), and particulate organic carbon (POC) in the podzol, whereas the concentrations of these C fractions were decreased in the organic layer and the 35–70~cm mineral soil layer of the cambisol. The N treatment changed the contents of most of the investigated C fractions in both soil types and resulted in a considerable C~mobilization. But the processes of the C~mobilization between the cambisol and the podzol were completely different. According to the presented data, the cambisol obtaining moderate atmospheric N loads is much more sensitive to additional N inputs than the podzol that already received high amounts of atmospheric N.  相似文献   

20.
The impact of environmental perturbation (e.g., nitrogenous fertilizers) on the dynamics of methane fluxes from soils and wetland systems is poorly understood. Results of fertilizer studies are often contradictory, even within similar ecosystems. In the present study the hypothesis of whether these contradictory results may be explained by the composition of the methane-consuming microbial community and hence whether methanotrophic diversity affects methane fluxes was investigated. To this end, rice field and forest soils were incubated in microcosms and supplemented with different nitrogenous fertilizers and methane concentrations. By labeling the methane with 13C, diversity and function could be coupled by analyses of phospholipid-derived fatty acids (PLFA) extracted from the soils at different time points during incubation. In both rice field and forest soils, the activity as well as the growth rate of methane-consuming bacteria was affected differentially. For type I methanotrophs, fertilizer application stimulated the consumption of methane and the subsequent growth, while type II methanotrophs were generally inhibited. Terminal restriction fragment length polymorphism analyses of the pmoA gene supported the PLFA results. Multivariate analyses of stable-isotope-probing PLFA profiles indicated that in forest and rice field soils, Methylocystis (type II) species were affected by fertilization. The type I methanotrophs active in forest soils (Methylomicrobium/Methylosarcina related) differed from the active species in rice field soils (Methylobacter/Methylomonas related). Our results provide a case example showing that microbial community structure indeed matters, especially when assessing and predicting the impact of environmental change on biodiversity loss and ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号