首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compares soluble phenolics and lignin content in two wetland macrophytes with contrasting life strategies grown under a varying nutrient supply in the field and in a greenhouse experiment. The differences are explained in terms of the protein competition model (PCM) hypothesis relating changes in secondary metabolites to changing nutrient limitation. The two study species, Eleocharis cellulosa (EC) and Typha domingensis (TD), are both widespread in tropical and subtropical freshwater and brackish marshes of the New World, and are often found in P-limited rather than N-limited conditions. TD is a fast-growing competitor with large nutrient requirements. EC is a stress tolerator, quite well adapted to growth in nutrient-limiting environments. In both species, the concentration of phenolics was negatively correlated with increasing growth (due to increasing nutrient levels). This is in agreement with the PCM hypothesis, which predicts an increase in phenolic synthesis when protein synthesis (and consequently growth) is low due to limited resource availability. An interesting difference was found in the correlation between tissue nutrients and phenolics. TD from both the field and the greenhouse showed a negative correlation between tissue P and phenolics, while EC displayed a significant negative correlation between tissue N and phenolics. EC is adapted to low P, and increased tissue P content represents luxury consumption (uptake of P for storage) which is not reflected in increased growth and thus is not correlated with phenolics. These are the first steps in elucidating the relationship among nutrient availability, growth and phenolic content in two important primary producers of tropical and subtropical marshes.  相似文献   

2.
Latent pathogenic fungi (LPFs) affect plant growth, but some of them may stably colonize plants. LPFs were isolated from healthy Houttuynia cordata rhizomes to reveal this mechanism and identified as Ilyonectria liriodendri, an unidentified fungal sp., and Penicillium citrinum. Sterile H. cordata seedlings were cultivated in sterile or non-sterile soils and inoculated with the LPFs, followed by the plants’ analysis. The in vitro antifungal activity of H. cordata rhizome crude extracts on LPF were determined. The effect of inoculation of sterile seedlings by LPFs on the concentrations of rhizome phenolics was evaluated. The rates of in vitro growth inhibition amongst LPFs were determined. The LPFs had a strong negative effect on H. cordata in sterile soil; microbiota in non-sterile soil eliminated such influence. There was an interactive inhibition among LPFs; the secondary metabolites also regulated their colonization in H. cordata rhizomes. LPFs changed the accumulation of phenolics in H. cordata. The results provide that colonization of LPFs in rhizomes was regulated by the colonizing microbiota of H. cordata, the secondary metabolites in the H. cordata rhizomes, and the mutual inhibition and competition between the different latent pathogens.  相似文献   

3.
Phenolic compounds are commonly regarded as the main chemical defenses of deciduous woody plants against insects. To examine how indices of leaf maturation (water content, toughness, and sugar/protein ratio) modified larval consumption and growth relative to phenolics and phenolic-related leaf traits, we measured consumption and growth of fourth-instar Epirrita autumnata (Bkh.) (Lepidoptera: Geometridae) larvae on three different days on young, normal, and mature leaves, respectively, from the same mountain birch (Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti) trees. The larvae achieved the same growth rates on young and normal leaves, but had to consume 40% more on the latter. On more mature leaves, larval growth was poorer and was positively correlated with sugar/protein ratios (although the ratio peaked at that time). Indices of leaf maturation correlated with several phenolics in data pooled over the three study days, but poorly in any individual day. Similarly, in the pooled data, larval consumption and growth correlated with several leaf traits, but correlations between leaf and insect traits were few on any of the three days, and no trait was significant on each of the three days.We next examined whether variation in the maturation indices modified the associations of phenolics with insect consumption and growth. When interactions between phenolics and leaf maturation indices were taken into account, the number of phenolic compounds displaying significant associations with insect traits more than doubled. The relative importance of interactive versus direct associations increased with leaf maturation: on young leaves five phenolics showed direct and eleven interactive associations with insect traits, while in mature leaves we found two phenolics to display direct and thirteen phenolics interactive associations. Leaf water content, either alone or together with toughness and sugar/protein ratio, generally explained more of the variance in Epirrita growth (up to 59%) than any phenolic or phenolic-related trait alone (highest value 20%). Including interactive effects between phenolics and indices of leaf maturation in the model increased the proportion explained of variance in larval growth between 49 and 73%. Maturation indices explained 0 to 23% of variance in consumption, and the phenolic compound with the highest (positive!) correlation alone up to 28%, but taking into account interactions between phenolics and maturation indices raised the degree of explanation much (namely, 32 to 53%) over that explained by indices of leaf maturation alone. This indicates strong interactive effects on consumption between phenolics and indices of leaf maturation.  相似文献   

4.
Many but not all species of Streptomyces species harbour a bicistronic melC operon, in which melC2 encodes an extracellular tyrosinase (a polyphenol oxidase) and melC1 encodes a helper protein. On the other hand, a melC-homologous operon (melD) is present in all sequenced Streptomyces chromosomes and could be isolated by PCR from six other species tested. Bioinformatic analysis showed that melC and melD have divergently evolved toward different functions. MelD2, unlike tyrosinase (MelC2), is not secreted, and has a narrower substrate spectrum. Deletion of melD caused an increased sensitivity to several phenolics that are substrates of MelD2. Intracellularly, MelD2 presumably oxidizes the phenolics, thus bypassing spontaneous copper-dependent oxidation that generates DNA-damaging reactive oxygen species. Surprisingly, melC+ strains were more sensitive rather than less sensitive to phenolics than melC strains. This appeared to be due to conversion of the phenolics by MelC2 to more hydrophobic and membrane-permeable quinones. We propose that the conserved melD operon is involved in defense against phenolics produced by plants, and the sporadically present melC operon probably plays an aggressive role in converting the phenolics to the more permeable quinones, thus fending off less tolerant competing microbes (lacking melD) in the phenolic-rich rhizosphere.  相似文献   

5.
Several hypotheses relate a negative relationship between foliar concentration of phenolic compounds and nitrogen to physiological processes such as leaf development, seasonal variation in allocation priorities, nutrient, light and water related growth limitation, as well as herbivore attack. We sampled four common deciduous woody species of central Tanzania monthly during the growing season to assess changes in this relation and their nutritional value to ruminants. We found a negative relationship between leaf N and phenolic compounds within and among species and sites that weakens during the course of the growing season that was consistent for total phenolics, but not for condensed tannins. Leaf N concentration decreased throughout the season, its withdrawal being positively related with leaf N at first sampling date. Secondary compounds concentration showed no consistent seasonal trend. Concentrations of leaf N and phenolics were correlated with 13C discrimination in the two shrub species and with soil P in the two tree species. Digestibility was positively correlated with foliar N and negatively correlated with secondary compounds. We conclude that phenolic compounds may serve as reliable clues for selecting foliage rich in N at site and species level only during the first months of the growing season.  相似文献   

6.
We investigated the effects of increased atmospheric CO2 on the biomass, photosynthesis, protein and phenolic concentrations and content of Plantago maritima and Armeria maritima. This enabled us to test the protein competition model (PCM) for predicting C allocation to phenolics. Three contrasting responses to elevated CO2 (600 μmol CO2 mol−1) between the two study species were observed. (1) In P. maritima, plant biomass increased and the maximum carboxylation rate of Rubisco (Vc,max) was decreased. However, in A. maritima, shoot biomass decreased and the Vc,max of Rubisco was unchanged. (2) The total phenolic content increased in P. maritima but decreased in A. maritima. (3) Protein concentrations and content decreased in P. maritima and root protein concentrations and content increased in A. maritima. We conclude that C and N allocation to phenolics and proteins is species- and organ-specific and the PCM predictions were correct when phenolics and proteins were expressed on a per plant content basis.  相似文献   

7.
8.
We hypothesized that the outcome of competition between ericaceous plants and grasses is strongly affected by the concentrations of phenolics in the litter that they produce. To test the effect of phenolic-rich litter on soluble soil nitrogen concentrations, plant nitrogen uptake and inter-specific competition, we conducted a greenhouse experiment with the shrub Calluna vulgaris and the grass Deschampsia flexuosa and their leaf litters. Two litters of C. vulgaris were used, with equal nitrogen concentration but different (high and low) concentrations of total phenolics. The D. flexuosa leaf litter contained lower concentrations of phenolics, but higher concentrations of nitrogen than the C. vulgaris litters. The plants were grown in monocultures and in mixed cultures. Inorganic and dissolved organic nitrogen were measured monthly during the experiment. After four months, we measured above- and belowground biomass and the nutrient concentrations in above- and belowground plant parts. In monocultures, C. vulgaris produced more shoot and root biomass on its own litter than with no litter. Growth of Calluna was reduced on grass litter. D. flexuosa plants produced most biomass on their own litter type, whether in monocultures or in mixed cultures. Addition of Calluna litter stimulated the growth of D. flexuosa both in monoculture and in mixtures. The grass plants outcompeted Calluna both on shrub litter and on grass litter but not when grown without litter. The two C. vulgaris litter types that differed in their concentration of phenolics did not differ in their effects on the competition between the two species or on the production of inorganic and dissolved organic nitrogen. We conclude that the nitrogen content of the litter is more important as a plant feature driving competition between shrubs and grasses than the concentrations of phenolics.  相似文献   

9.
Amounts of the sesquiterpene lactones and the major phenolics were determined in the chicory plant at different times during the growing season. The levels of the sesquiterpene lactones (lactucin, lactupicrin and 8-deoxylactucin) and the hydroxycoumarin cichoriin were found to be highest in the most actively growing regions of the plant. In two-choice and no-choice feeding experiments with borosilicate discs, 8-deoxylactucin, lactupicrin and cichoriin significantly reduced feeding of Schistocerca gregaria at levels comparable to those present in the plant. Cichoriin was still significantly antifeedant at 0.006% dry wt, while aesculin, aesculetin and the caffeic acid ester, chicoric acid were inactive. We conclude that the three sesquiterpene lactones secreted in the latex provide a significant barrier to herbivory in chicory, although the phenolics and notably cichoriin also protect the plant from insect feeding.  相似文献   

10.
The seasonal dynamics of total phenolics and phenolic acids in the stems of the global invader Conyza canadensis, from March (young plants in the form of rosettes) to September (fruit abscission and the beginning of plant decline), and in sandy soil were monitored monthly in non-native areas. The highest amount of total free phenolics was found in its tissues (31,000 μg g−1) during the flowering and fruiting time (August). Bound phenolics peaked (up to 8443 μg g−1) during shoot elongation and intensive plant growth (May–June) and in September. In the stems, bound phenolic acids (p-coumaric, ferulic, p-hydroxybenzoic, vanillic and syringic) have a maximum twice, in May and in August, with ferulic acid predominating (up to 951.6 μg g−1). Free phenolic acids in the plant's tissue peaked in May (plant elongation). In the soil under C. canadensis, the amount of bound phenolics decreased between March and June, before increasing up to the full bloom phase of the plants (August). The amount of bound phenolic acids was several times greater than that of free ones, with maximum values in August. C. canadensis is a highly important source of phenolics in the ruderal phytocoenosis in new areas. In order to better explain the mechanisms of the spread and domination of invasive plants in non-native areas, in which allelopathy plays a decisive role, it is necessary to measure the production of allelochemicals in tissue and their accumulation in soil at the shortest possible intervals and link this with the phases of plant development.  相似文献   

11.
Studies using [3H]chlorogenic acid and [3H]rutin demonstrated that the kinetics of uptake of these plant phenolics into the haemolymph of 5th-instar Heliothis zea (Boddie) following actue oral administration is a first-order process. The total quantity of either phenolic present in the haemolymph within 1 hr amounts to 5% or less of the total ingested dose. Based on TLC analyses, 80% or more of the radioactivity in the haemolymph occurs as the parent phenolic. Retention of [3H]-chlorogenic acid or [3H]-rutin in H. zea following chronic feeding from 1st to 3rd-instar larvae is also linearly related to dietary dose. Chlorogenic acid and rutin are both equitoxic and equivalent in bioavailability to H. zea.Loss of [3H]-rutin from the haemolymph of 5th-instar larvae following injection is biphasic. One half of the injected dose is excreted in the frass in the first 6 hr after injection; the other half is thereafter eliminated at 1/20th of the initial rate. Analyses of extracts of frass by thin-layer chromatography indicate that after either chronic or acute feeding 90% of the ingested phenolic is excreted unchanged. Possible sites and modes of action of phenolics in insects are discussed in light of these findings.  相似文献   

12.
Foliar fungal endophytes are horizontally transmitted symbionts that inhabit healthy, photosynthetic tissues of all lineages of land plants where they influence plant health and productivity. Endophyte communities often are more similar among closely related hosts, potentially as a result of a preference for particular morphological, ecophysiological, or chemical host traits. However, the various ecological and evolutionary factors that drive community assembly often are difficult to disentangle. Here, we examined the impact of six polyphenolic compounds on the growth of 15 phylogenetically diverse Quercus (oak)-associated fungal species and assessed whether tolerance to phenolics is associated with their degree of specialization to oaks in nature. Despite frequently reported antifungal properties of phenolics, we found that oak-associated fungi grew the same or better than positive controls in 78% of trials with all compounds, although fungal sensitivity differed as a function of compound type and concentration. Overall, species with high specificity to Quercus had the greatest tolerance to phenolics, whereas generalists were more sensitive. Differences between generalists and specialists suggest that variation in phenolic abundance and composition among oaks may act as a selective filter that influences endophyte host associations in nature.  相似文献   

13.
In leaf derived callus cultures of Solanum laciniatum Ait. both phenolics and solasodine concentrations increased when medium phosphate or nitrogen concs. were reduced to one-eighth or when sucrose concentration was increased from 3 to 4–8 %. Under these conditions growth was reduced and final FW:DW fell. Growth was inhibited by sucrose depletion and nitrogen supple -mentation. On additional nitrogen the concentrations of phenolics and protein significantly increased, FW:DW was reduced and solasodine concentration was unaffected. In seedling derived cultures phosphate depletion resulted in a significant increase in phenolics concentration, an inhibition of growth and a rise in solasodine concentration.  相似文献   

14.
Polyphenolic compounds produced by plants can chelate iron, reducing its bioavailability to plant‐associated bacteria. In response to limited iron levels, most bacteria produce siderophores to acquire needed iron quantities. The amount of phenolic compounds detected in methanolic washings of leaves of different plant species varied greatly, being nearly sevenfold higher in Viburnum tinus than in Phaseolus vulgaris. In species with high levels of total phenolics (e.g. Pelargonium hortorum), tannin concentration of leaf washings was also high and accounted for up to 85% of total phenolics. Both stimulation of production of the siderophore pyoverdine in Pseudomonas syringae strain B728a and inhibition of growth of an isogenic mutant I‐1, deficient in pyoverdine production were associated with plants harbouring high levels of leaf surface phenolics. Levels of tannic acid sufficient to inhibit growth of the pyoverdine mutant in culture in an iron‐reversible fashion were similar to tannin levels found on leaves of plants such as P. hortorum. Additionally, the amount of pyoverdines produced by P. syringae and quantified in leaf washings from a variety of plants was directly related to the concentration of tannins released from the leaf, indicating that tannins were responsible for sequestering iron. Phenolic compounds, principally tannins, may thus play an important role in plant–microbe interactions.  相似文献   

15.
In this work, we studied the effects of cryopreservation on various parameters of early stages of germination of Phaseolus vulgaris seeds (0, 7 and 14?days). Percentages of germination, fresh mass of different plant parts, levels of chlorophyll pigments (a, b, total), malondialdehyde, other aldehydes, phenolics (cell wall-linked, free, and total) and protein were determined. No phenotypic changes were observed visually in seedlings recovered from cryopreserved seeds. However, several significant effects of seed liquid nitrogen exposure were recorded at the biochemical level. There was a significant negative effect of cryopreservation on shoot protein content, which decreased from 3.11?mg?g?1 fresh weight for non-cryopreserved controls to 0.44?mg?g?1 fresh shoot weight for cryopreserved seeds. On the other hand, cryopreservation significantly increased levels of other aldehydes than malondialdehyde in shoots at day 7, from 56.47?μmol?g?1 for non-cryopreserved controls to 253.19?μmol?g?1 fresh shoot weight for cryopreserved samples. Liquid nitrogen exposure significantly reduced phenolics contents (free, cell-wall linked, total) in roots at day 7 after onset of germination. In general, roots were more affected by cryostorage compared with other plant parts, while leaves were the least affected. The effects of seed cryopreservation seem to decline progressively along with seedling growth.  相似文献   

16.
Iron is an essential metal element for all living organisms. Graminaceous plants produce and secrete mugineic acid family phytosiderophores from their roots to acquire iron in the soil. Phytosiderophores chelate and solubilize insoluble iron hydroxide in the soil. Subsequently, plants take up iron-phytosiderophore complexes through specific transporters on the root cell membrane. Phytosiderophores are also thought to be important for the internal transport of various transition metals, including iron. In this study, we analyzed TOM2 and TOM3, rice homologs of transporter of mugineic acid family phytosiderophores 1 (TOM1), a crucial efflux transporter directly involved in phytosiderophore secretion into the soil. Transgenic rice analysis using promoter-β-glucuronidase revealed that TOM2 was expressed in tissues involved in metal translocation, whereas TOM3 was expressed only in restricted parts of the plant. Strong TOM2 expression was observed in developing tissues during seed maturation and germination, whereas TOM3 expression was weak during seed maturation. Transgenic rice in which TOM2 expression was repressed by RNA interference showed growth defects compared with non-transformants and TOM3-repressed rice. Xenopus laevis oocytes expressing TOM2 released 14C-labeled deoxymugineic acid, the initial phytosiderophore compound in the biosynthetic pathway in rice. In onion epidermal and rice root cells, the TOM2-GFP fusion protein localized to the cell membrane, indicating that the TOM2 protein is a transporter for phytosiderophore efflux to the cell exterior. Our results indicate that TOM2 is involved in the internal transport of deoxymugineic acid, which is required for normal plant growth.  相似文献   

17.
The efficacy of eight fungal and eight bacterial isolates was tested for their ability to inhibit the growth of Sclerotium rolfsii, the causal agent of collar rot of peppermint. In vitro studies revealed that Trichoderma harzianum (THA) and Pseudomonas fluorescens (PFM) showed the highest inhibition of mycelial growth (68.28; 74.25 %) of S. rolfsii. The antagonists T. harzianum and P. fluorescens were compatible with each other and they were tested alone and together in in vivo for the control of S. rolfsii. Besides, the induction of defense-related enzymes such as peroxidase, polyphenoloxidase, phenylalanine ammonia-lyase, and the accumulation of phenolics in peppermint plants due to the application of bioagents were also studied. Combined application of talc-based formulation of bioagents and challenge inoculation with S. rolfsii recorded maximum induction of defense-related enzymes, and accumulation of phenolics as compared with individual application. This study suggests that the increased induction of defense-related enzymes (two- to threefold) and phenolic content (threefold) due to the combination treatment of bioagents might be involved in the reduction of collar rot incidence.  相似文献   

18.
The introduced, invasive species Conyza canadensis L. covers large areas of the sandy levees next to the River Tamiš (Serbia), forming dense microcomplexes and dominating the other herbaceous species in the ruderal phytocoenosis with its aboveground mass and abundance. In addition to this species, a further 28 plant species were found, but the abundance and cover of these was significantly lower. The allelopathic influence of the species C. canadensis was investigated through analyzing the total phenolics and phenolic acids, as the main allelochemicals, in dead and vegetative parts and the soil beneath them. Seed germination and seedling growth of the target plants (Dactylis glomerata L. and Trifolium repens L.), which grow in this community, served as a measure of the inhibitory capacity of this species. It was established that the content of total phenolics and phenolic acids (p-coumaric, ferulic, p-hydroxybenzoic, vanillic and syringic) varies, following the order: vegetative plant parts > dead plant parts > sandy soil under C. canadensis. Water leachate and soils inhibited seed germination and seedling growth of the test plants to varying degrees, following the order: vegetative parts > dead parts > sandy soil, which is directly related to the content of total phenolics and phenolic acids in them. It was concluded that the pioneer species C. canadensis plays a decisive role in the first phases of vegetation succession and the process of soil formation on the barren sandy levees, owing to the synthesis of secondary phenolic metabolites.  相似文献   

19.
The leaf phenolics of a number of Pyrus interspecific hybrids (from controlled hand-crosses) and the parental individuals have been examined. In most instances it was found that the presence of certain phenolics in the hybrids is of diagnostic value in predicting the identities of one or both of the original parents. The flavone and flavonol glycosides appear to be inherited as simple dominant characters (whether inherited from male or female parents) but phenolics such as epicatechin, catechin, caffeoylcalleryanin and p-hydroxybenzoic acid did not always appear to show such simple dominance.  相似文献   

20.
Summary A significant decrease in production of total phenolics was apparent with nitrogen fertilization in three of five seed sources of grand fir [Abies grandis (Dougl.) Lindl.]. Subsequent extraction and identification of phenolics indicated that two compounds increased with fertilization, and when grouped by biosynthetic origin into cinnamic acids, benzoic acids, and flavonoids, no differences were apparent with fertilization. Total biomass increased with fertilization, and the relation between growth and total phenolics was similar for all seed sources. The increase in growth and decrease in total phenolics suggest that, in the carbon allocation hierarchy, as available soil nitrogen increases, phenolics represent a lower priority.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号