首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haemolymph levels of juvenile hormone esterase, 1-naphthyl acetate esterase, and juvenile hormone were measured in synchronously staged diapause and nondiapause larvae of the European corn borer, Ostrinia nubilalis. Juvenile hormone esterase levels were monitored using juvenile hormone I as a substrate while juvenile hormone titres were measured with the Galleria bioassay. Haemolymph of nondiapause larvae showed two peaks of juvenile hormone hydrolytic activity: one near the end of the feeding phase and a smaller one just prior to pupal ecdysis. These peaks of enzyme activity correlated well with the low levels of haemolymph juvenile hormone. Juvenile hormone titres were high early in the stadium then showed a second peak during the prepupal stage coinciding with low esterase activity. Diapause haemolymph had peak juvenile hormone esterase activity nearly 4 times the nondiapause level, reaching a peak near the end of the feeding phase. Diapause-destined larvae retained high juvenile hormone titres even during the rise of the high esterase levels. 1-naphthyl acetate esterase levels did not correlate with the juvenile hormone esterase levels in either the diapause or nondiapause haemolymph. High levels of 1-naphthyl acetate esterase activity were associated with moulting periods.  相似文献   

2.
The signal to induce diapause in H. virescens comes early in development (prior to the third instar in most insects), but the signal to break diapause can come shortly after entrance into diapause at pupation. Haemolymph ecdysteroid titres in both diapause-bound and non-diapause-bound Heliothis virescens larvae were similar in the first two thirds of the last-larval instar, when similar changes in morphology and behaviour occurred. However, the number of stepwise increases in titre and the timing of the steps was different in the two groups of larvae. Haemolymph ecdysteroid titres in the last third of the instar were approx, five times higher in non-diapause than in diapause-bound larvae. In diapausing pupae, haemolymph ecdysteroid titres dropped to levels found in larvae which had completed two thirds of the last instar. When diapausing pupae were warmed to break diapause, haemolymph ecdysteroid titres rose again. However, 2 of the 4 high ecdysteroid levels detected in pupae developing after diapause break were considerably lower than those detected for non-diapause pupae.  相似文献   

3.
The epidermal cell commitment (to pupation or formation of immaculate larvae) and related haemolymph ecdysteroid titres of the southwestern corn borer, Diatraea grandiosella were studied in both nondiapause-bound and diapause-bound last-instar female larvae. Cell commitment was estimated by examining the characteristics of new cuticle secreted in response to an injection of 20-hydroxyecdysone. Haemolymph ecdysteroid titres were determined by radioimmunoassay. Juvenile hormone effect on epidermal cell commitment was studied by applying a juvenile hormone mimic (ZR-515) to last-instar non-diapause-bound larvae and examining the resulting cuticle.In non-diapause-bound larvae, the epidermis of different body regions was committed to pupal development at different times. When pupal cuticular characteristics were evaluated by a scoring system, it appeared that the development of normal pupal cuticle is discontinuous. Three sudden increases in pupal characteristics were observed at 1.67, 2.67 and 3.67 days into the last-larval instar. Haemolymph ecdysteroid titre changes were correlated with the sudden increases in pupal characteristics. Peak ecdysteroid titres were found at 1.67, 2.33, and 3.33 days into the final instar. A fourth ecdysteroid peak (138.8 ng/ml of haemolymph) occurred in pharate pupae. In contrast, the commitment of diapause-bound larvae to produce immaculate integument was made in a fast and continuous fashion. Full commitment was made by 50% of the individuals 4 days (ca. first quarter) into the stadium. Haemolymph ecdysteroid titres fluctuated during the first 2 weeks of the stadium but no significant peaks were observed prior to pharate stage. An ecdysteroid peak (29.8 ng/ml of haemolymph) was identified in pharate immaculate larvae.Pupal development could be completely prevented in 26.7% of nondiapause-bound larvae as late as 4 days into the last instar by topical application of ZR-515. This indicates that the commitment to pupation as revealed by 20-hydroxyecdysone injection is reversible.  相似文献   

4.
No differences were observed between the rates of development of larvae and pupae from diapause- and non-diapause-destined lines of Sarcophaga argyrostoma except that those destined for diapause have a longer post-feeding, wandering, larval phase associated with a lower haemolymph ecdysteroid titre, as measured by radioimmunoassay. Following pupariation, both cultures show a high haemolymph titre associated with larval/pupal apolysis. The developing culture displays an ecdysteroid peak at 72 h after pupariation which may be involved with pupal/adult apolysis and the initiation of pharate-adult development. This peak is reduced in the diapause-destined culture. Following the initiation of pharate adult development, there is a very large peak at 85–90 h. Those pupae entering diapause display very low titres as a result of the failure of the brain/prothoracic gland axis to release ecdysone. There are no quantitative or qualitative differences between the titres of specific ecdysteroids in the prepupae of the two lines as determined by reverse-phase high-performance liquid chromatography. A preliminary examination of the levels of free and conjugated ecdysteroids has provided the basis for proposing a mechanism of ecdysone metabolism in this insect.  相似文献   

5.
The haemolymph ecdysteroid titre and in vitro capacities of prothoracic glands and corpora allata to synthesize ecdysone and juvenile hormone, respectively, during the last-larval instar of diapause-destined (short-day) and non-diapause-destined (long-day) Manduca sexta were investigated. In general, the ecdysteroid titres for both populations of larvae were the same and exhibited the two peaks characteristic of the haemolymph titre during this developmental stage in Manduca. The only difference in the titre occurred between day 7 plus 12 h and day 7 plus 20 h, when the short-day larval titre did not decrease as quickly as the long-day titre. The in vitro synthesis of ecdysone by prothoracic glands of short- and long-day larvae during the pharate pupal phase of the instar were also essentially the same. Activity fluctuated at times which would support the idea that ecdysone synthesis by the glands is a major contributing factor to the changes in the haemolymph ecdysteroid titre. There was one subtle difference in prothoracic gland activity between the two populations, occurring on day 7 plus 2 h. By day 7 plus 10 h, however, rates of ecdysone synthesis by the short- and long-day glands were comparable. This elevated activity of the short-day glands occurred just prior to the period the haemolymph ecdysteroid titre remained elevated in these larvae. The capacities of corpora allata to synthesize juvenile hormone I and III in vitro were not markedly different in long- and short-day last-instar larvae. At the time of prothoracicotropic hormone release in the early pupa, activity of corpora allata from short- and long-day reared animals was low and also essentially the same. There were a few differences in the levels of synthesis at isolated times, but they were not consistent for both homologues. Overall, there are no compelling differences in the fluctuations of ecdysteroids and juvenile hormones between diapause-destined and non-diapause-destined Manduca larvae. Since these hormones do not appear to play any obviously significant role in the induction of pupal diapause in this insect, the photoperiodic induction of diapause in Manduca appears to be a predominantly brain-centred phenomenon not involving endocrine effectors.  相似文献   

6.
The regulation of juvenile hormone esterase in last-instar diapause and nondiapause larvae of Ostrinia nubilalis was investigated using topically applied juvenile hormone I and a juvenile hormone mimic, methoprene. The influence of the head on juvenile hormone esterase was also investigated. Both juvenile hormone and methoprene caused increases in esterase levels when applied to feeding animals. Neither the hormone nor methoprene was capable of elevating nondiapause esterase activity to levels comparable to those found in untreated prediapause larvae. The esterase levels could be elevated in the larval body, without the head, during prepupal development of nondiapause larvae and in post-feeding diapause larvae. In both cases, juvenile hormone or methoprene induced juvenile hormone esterase activity in head-ligated animals. Topically applied methoprene prolonged feeding and delayed the onset of diapause. When methoprene was applied to larvae that had entered diapause, it disrupted diapause by inducing a moult.  相似文献   

7.
At 25 degrees C and under a long-day photoperiod, all 5th instar Psacothea hilaris larvae pupate at the next molt. Under a short-day photoperiod, in contrast, they undergo one or two additional larval molts and enter diapause; the 7th instar larvae enter diapause without further molt. The changes in hemolymph juvenile hormone (JH III) titers, JH esterase activity, and ecdysteroid titers in pupation-destined, pre-diapause, and diapause-destined larvae were examined. JH titers of the 5th instar pupation-destined larvae decreased continuously from 1.3 ng/ml and became virtually undetectable on day 13, when JH esterase activity peaked. Ecdysteroids exhibited a small peak on day 8, 1 day before gut purge, and a large peak on day 11, 2 days before the larvae became pre-pupae. The two ecdysteroid peaks are suggested to be associated with pupal commitment and pupation, respectively. JH titers of the 5th instar pre-diapause larvae were maintained at approximately 1.5 ng/ml for 5 days and then increased to form a peak (3.3 ng/ml) on day 11. JH esterase activity remained at a low level throughout. Ecdysteroid levels exhibited a large peak of 40 ng/ml on day 18, coincident with the larval molt to the 6th instar. JH titers of the 7th instar diapause-destined larvae peaked at 1.9 ng/ml on day 3, and a level of approximately 1.1 ng/ml was maintained even 30-60 days into the instar, when they were in diapause. Ecdysteroid titers remained approximately 0.02 ng/ml. Diapause induction in this species was suggested to be a consequence of high JH and low ecdysteroid titers.  相似文献   

8.
《Insect Biochemistry》1989,19(4):361-365
The release of lipophorin and total protein was examined from the fat body of nondiapause and diapause larvae of the southwestern corn borer, Diatraea grandiosella, incubated in vitro in Grace's medium. The characteristics of the released lipophorin were compared to those of the high-density lipophorin present in the hemolymph of nondiapause and diapause larvae. Over a 4 h incubation period, the fat body of nondiapause larvae released about 1.5 times more total protein and 2 times more lipophorin per mg dry weight than did that of diapause larvae. Lipophorin isolated from the medium in which fat bodies of nondiapause and diapause larvae had been incubated and from the plasma of nondiapause and diapause larvae had similar mean densities of 1.115, 1.112, 1.117 and 1.119 g/ml, respectively. Although the lipid classes detected in lipophorin isolated from the fat body incubation medium and hemolymph were identical, more polar lipids and less diacylglycerol were associated with lipophorin isolated from fat body incubation medium then were associated with lipophorin isolated from the hemolymph. Sterols accounted for about 11% of the total lipids of lipophorin isolated from the fat body incubation medium, whereas they accounted for about 20% of the total lipids of lipophorin from hemolymph. We conclude that the fat body of feeding nondiapause larvae and nonfeeding diapause larvae releases high-density lipophorin.  相似文献   

9.
Changes in prothoracic gland morphology were correlated to developmental events and ecdysteroid titres (20-hydroxyecdysone equivalents) during the last-larval instar in Spodoptera littoralis. After ecdysis to the last-larval instar the haemolymph ecdysteroid titre remained at about 45 ng/ml, when the prothoracic glands appeared quiescent. The first signs of distinct gland activity, indicated by increased cell size and radial channel formation, were observed at about 12 h prior to the cessation of feeding (36 h after the last-larval moult), accompanied by a gradual increase in ecdysteroid titre to 110 ng/ml haemolymph, at the onset of metamorphosis. During this phase ecdysteroid titres remained at a constant level (140–210 ng/ml haemolymph) and prothoracic gland cellular activity was absent for a short period. The construction of pupation cells occurred when haemolymph ecdysteroids titres increased to 700 ng/ml. A rapid increase in ecdysteroids began on the fourth night (1600 ng/ml haemolymph) reaching a maximal level (4000 ng/ml haemolymph) at the beginning of the fourth day. In freshly moulted pupae a relatively high ecdysteroid titre (1100 ng/ml haemolymph) was still observed, although during a decrease to almost negligible levels. The increase in ecdysteroid level during the third and the fourth nights of the last-larval instar was correlated with the period when almost all the prothoracic gland cells showed signs of high activity. Neck-ligation experiments indicated the necessity of head factors for normal metamorphosis up to the second to third day of the instar. The possibility that the prothoracic glands are under prothoracicotropic hormone regulation at these times is discussed.  相似文献   

10.
The ecdysteroid titre and the body weight during the last-larval instar of Ephestia kuehniella were determined. Slightly elevated ecdysteroid titres occur during the first 12 h following the last larval-larval ecdysis (38 ng/g) and again some 120 h later, lasting about 48 h (33 ng/g). A high ecdysteroid peak (750 ng/g) with a maximum in prepupae of the eye-class A4 precedes the larval-pupal ecdysis. The basal levels between these increased ecdysteroid titres are between 13 ng/g and 15 ng/g. Compared with the body weight, the first sligtly increased ecdysteroid titre 12 h after ecdysis is associated with the beginning of food intake, the second increase at 144 h after ecdysis with reduced gain in body weight. The prepupal ecdysteroid peak occurs whilst the body weight remains constant. Correlations between the varying ecdysteroid titre and morphological and physiological events accompanying the progress in larval-pupal development are discussed.  相似文献   

11.
The last larval moult of Galleria mellonella is induced by an elevation of ecdysteroid titre to more than 200 ng/g. After ecdysis the titre remains very low until 70 hr of the last-instar when a slight elevation in ecdysteroid concentration initiates the onset of metamorphosis. An ecdysteroid peak (275 ng/g), which occurs between 108 and 144 hr, is associated with wandering and cocoon spinning. Pupal ecdysis follows about 20 hr after a large ecdysteroid peak (780 ng/g) with a maximum in slowly-mobile prepupae (160 hr of the last larval instar). The ecdysteroid decrease between the two peaks coincides with the period when the larvae exposed to unfavourable conditions enter diapause. The pupal-adult moult is initiated by a high ecdysteroid peak (1500–2500 ng/g) in early pupae and imaginal cuticle is secreted in response to a smaller peak (ca. 500 ng/g) in the middle of pupal instar.Until early pupae, the ecdysteroid content is regulated by the prothoracic glands. In decapitated larvae the glands become spontaneously active after 30–40 days and the body titre of ecdysteroids undergoes an increase; the glands revert to inactivity when the insects accomplish secretion of pupal cuticle. A similar ecdysteroid increase occurs within 10 days when the decapitated larvae receive implants of brains releasing the prothoracicotropic neurohormone (PTTH). In either case, the pupation-inducing increase of ecdysteroids is 3 times higher than the large ecdysteroid peak in the last-instar of intact larvae. This indicates that the function of prothoracic glands in intact larvae is restrained, probably by the juvenile hormone (JH). Exogenous JH suppresses the spontaneous activation of the prothoracic glands in decapitated larvae and reduces the ecdysteroid concentration in those larvae (both decapitated and intact), whose glands were activated by PTTH. Furthermore, JH influences the PTTH release from the brain in situ: depending on JH concentration and the age and size of treated larvae, the PTTH liberation is either accelerated or delayed.Neither in G. mellonella larvae, nor in the diapausing pupae of Hyalophora cecropia and Celerio euphorbiae, does JH directly activate the prothoracic glands. It is suggested that the induction of the moult by JH in decerebrate insects, which has been observed in some species, is either due to indirect stimulation of ecdysteroid production or to increased sensitivity of target tissues to ecdysteroids. In G. mellonella, a moult occurs at a 5–15 times lower than usual ecdysteroid concentration when the last-instar larvae are exposed to JH.  相似文献   

12.
13.
Summary The structure of the extensible (alloscutum) and inextensible (scutum) integument of the nymph, Amblyomma variegatum was examined during the whole bloodmeal and the nymphal-adult moulting cycle. Integumental events were tentatively correlated with the ecdysteroid levels measured by radioimmunoassay. We observed that all the integumental events were realised along an anteroposterior gradient. During the 5 days corresponding to the bloodmeal, although the hormone concentration was low, a new endocuticle was deposited on both the alloscutum and scutum. Furthermore, mitoses were initiated in the capitulum. On days 1–2 after the meal, ecdysteroid titres began to increase and reached a first peak corresponding to 4.1 ng 20-hydroxyecdysone equivalents/tick on the 4th day after the ticks dropped off their host. At this time the epidermis of the capitulum was detached and the outline of the adult capitulum was already visible. Mitotic activity in the alloscutum was initiated. On day 6 post-drop, the frontal apolysis was achieved and the ecdysteroid titres declined to basal values. A second peak much higher than the first one (maximum value of 33.7 ng/tick) and identified principally as 20-hydroxyecdysone by HPLC/RIA was noted on the 13th day post-drop. During the period of increase in the ecdysteroid levels (days 9–10 post-drop), the mitotic phase ended in the alloscutum and the apolysis began. Epicuticle was deposited after day 12 postdrop. Then, while the titre fell to low values (about 1.6 ng/tick, days 16–20 post-drop), the exocuticle was deposited and the nymphal cuticle was digested. All adult structures were functional 3 days before ecdysis. In young male as in female adults the mean value of the ecdysteroid levels corresponded to about 2.5 ng/tick. Finally, hydrolysis of tick whole extracts with esterase demonstrated a low increase of RIA-positive material, demonstrating the probable presence of natural ecdysteroid fatty-acid conjugates in this species.  相似文献   

14.
Developmental patterns of low-temperature tolerance and glycerol production were determined for larval, pupal and adult stages of the flesh fly Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae). Both diapause and non-diapause-destined flies were reared at relatively high temperatures, 20° or 25°C, prior to testing. Cold tolerance was greatest for diapause pupae aged 12–35 days after pupariation. Among non-diapause-destined flies, pupae exhibited a greater level of low temperature tolerance than larvae or adults. Although diapause pupae were more tolerant than non-diapause pupae maximal cold tolerance was not attained in either group until 10 days after pupariation. Non-diapause-destined feeding and wandering larvae had higher glycerol levels than larvae destined for diapause. During the first 6 weeks after pupariation glycerol titres increased steadily in diapause pupae. Rapid loss of glycerol is associated with the termination of pupal diapause.  相似文献   

15.
The hormonal control of the facultative diapause of the codling moth has been investigated. The diapause can be divided into 4 phases or periods: (1) diapause induction by short-day conditions (SD) in young larvae, (2) initiation of the diapause in the early last larval instar by a high titre of juvenile hormone, (3) onset and maintenance of diapause with inactivity of the neuroendocrine system, as evidenced by the results of neck-ligation experiments, (4)termination of diapause by the production of ecdysteroid.Diapause-induced larvae pupated after spinning the cocoon, if the state of induction was changed by injection with the anti-juvenile hormone precocene II at the beginning of the last larval instar and subsequent results of neck-ligation experiments, (4) termination of diapause by the production of ecdysteroid. treated with juvenile hormone during the first 1.5 days after the last larval moult and subsequently reared under SD. Under LD, continuous application of juvenile hormone during the last larval instar and after spinning did not prevent the insects from moulting to either a supernumerary larva, a pupa or a larval-pupal intermediate. Termination of diapause, i.e. pupation, was achieved by injecting diapausing larvae with 20-hydroxyecdysone. Although juvenile hormone was found to have a prothoractropic effect in diapausing larvae, no pupal moult could be induced by the application of the hormone. Contrary to the hormonal situation before pupation of nondiapausing larvae, no juvenile hormone could be detected before or during the pupation of larvae after diapause.  相似文献   

16.
《Insect Biochemistry》1990,20(5):517-522
The capacity of the fat body of nondiapause, prediapause and diapause larvae of the southwestern corn borer, Diatraea gradiosella, to synthesize and release lipophorin was examined in vitro using [3H]leucine as the radiotracer. Synthesis and release of [3H]lipophorin by the fat body peaked in 11–13 day-old fifth instar nondiapause larvae, which coincided with their feeding period. The rate of lipophorin synthesis in the fat body of newly ecdysed pupae was extremely low. Synthesis and release of [3H]lipophorin by the fat body of prediapause larvae occurred at the highest rates in 20–35 day-old fifth and sixth instars, and declined to virtually undetectable levels after larvae entered diapause around 40 days-of-age. Immunoprecipitation of [3H]lipophorin from fat body of 13 day-old nondiapause larvae that had been pulse-labeled with [3H]leucine showed that the half life of lipophorin synthesis and processing was about 40 minutes. Release of total protein and lipophorin from the fat body of 13 day-old nondiapause larvae into Grace's medium was inhibited by 56 and 60%, respectively, when 10 μg/ml tunicamycin was incorporated into medium.  相似文献   

17.
In the solitary egg-larval parasitoid Chelonus inanitus (Braconidae) both polydnavirus and the parasitoid larva manipulate host development. Parasitization leads to a premature drop in juvenile hormone titre and a precocious onset of metamorphosis in the 5th larval instar. The C. inanitus bracovirus (CiBV) alone causes a reduction in host ecdysteroid titres at the pupal cell formation stage and prevents pupation. Here we report three new findings. (1) We show that parasitization causes a reduction in haemolymph ecdysteroid titre immediately after the moult to the 5th instar; similarly low values were seen in nonparasitized larvae after the moult to the 6th instar. These data along with parasitoid removal experiments indicate that the low ecdysteroid titre after the moult is a very early sign of the upcoming metamorphosis. (2) In vitro experiments with prothoracic glands and brain extracts showed that CiBV affects both prothoracic glands and prothoracicotropic hormone after the stage of pupal cell formation. (3) In the haemolymph of parasitized larvae the ecdysteroid titre increased in the late cell formation stage, i.e. immediately before egression of the parasitoid. In vitro experiments showed that late 2nd instar parasitoids release ecdysteroids and are thus very likely responsible for the rise in host ecdysteroids.  相似文献   

18.
Decapitation experiments performed on large populations of carefully staged last-instar Rhodnius prolixus indicate that there is a 24 h sex difference in the time of the head critical period. Males pass the head critical period over a 36 h period beginning at 1200 A.Z.T. (Arbitrary Zeitgeber Time) day 6 after feeding, while females pass the head critical period over a 36 h period beginning at 1200 A.Z.T. day 5 after feeding. Radioimmunoassay determinations of haemolymph ecdysteroid titres show that there is also a 24 h sex difference in the time of the major increase in ecdysteroid titre that commences at the head critical period. These results imply that there is a sex difference in the time at which the release of prothoracicotropic hormone (PTTH) associated with the head critical period occurs. Decapitation prior to the head critical period results in a rapid, permanent decrease in ecdysteroid titre, while decapitation after the head critical period does not prevent normal increases in ecdysteroid levels. We infer that the presence of the head is essential until just prior to the head critical period and its associated increase in at the head critical period also indicates that the head critical period represents a change in the activity of the prothoracic glands indicative of a response to a significant release of PTTH at this time. The significance of these results is discussed in relation to both classical and recent evidence concerning the timing of PTTH release and changes in ecdysteroid titres in Rhodnius prolixus.  相似文献   

19.
A double-antibody ecdysone-specific radioimmunoassay was used to clarify whether the effects on metamorphosis of the juvenile hormone analogue methoprene are correlated with changes in ecdysteroids level. It appears that a small ecdysteroids peak, 5 days before pupation, is responsible for the transition from inhibition to defective metamorphosis. Study of the changes in ecdysteroid titer in last-instar larvae treated with the JHA 2 days prior to the appearance of the above small ecdysteroids' peak showed an immediate reduction in ecdysteroid level, followed by cyclic, successively reduced titer for about 20 days. After this period the larvae ceased to feed and entered to a diapauselike stage which ended in the death of the larvae. A similar effect on ecdysteroid titer and developmental arrest was exhibited by JHA-treated first-instar larvae. The mechanism of the interactions between JHA and ecdysteroid level deserves further investigation.  相似文献   

20.
A role for ecdysteroids in the phase polymorphism of the desert locust   总被引:1,自引:0,他引:1  
Abstract. Locusts show density-dependent continuous phase polymorphism; they appear in two forms or phases, gregarious and solitary, and there is a continuous range of intermediates between the extreme phases. Although earlier studies showed that there are no major phase-dependent differences in the titres of ecdysteroid in the haemolymph of desert locusts, Schistocerca gregaria , recent studies showed some minor differences in the timing of the main peak of ecdysteroids. In crowded penultimate- and last-instar hoppers, peak titres were lower but longer-lasting, whereas in isolated hoppers they were higher but of shorter duration. The major component of the haemolymph peak of ecdysteroid was 20-hydroxyecdysone in both isolated and crowded hoppers, but differences were found in the relative amounts of two minor components (makisterone A-like compound and highly polar products). In S. gregaria adults, the regression of the prothoracic glands was irregular and subject to high individual variations, but phase-dependent differences in the rate of regression were significant, and the adult glands did not produce physiologically significant amounts of ecdysteroids. Peak titres of ecdysteroid in the haemolymph were higher in isolated than in crowded adults. Similar to larvae, adults of the solitary phase contain more ecdysone in the haemolymph than those of the gregarious phase. Moreover, the phase characteristic titres of ecdysteroid in the adult stage can be shifted from one phase to another phase in response to appropriate changes in density. In contrast, the maximum amount of ecdysteroids in both ovaries and eggs was significantly higher in the gregarious than in the solitary phase. The amounts, and to some extent the types of ecdysteroids, were the only difference between ovaries and eggs from solitary and gregarious locusts. In addition, in newly hatched larvae, the amount of ecdysteroid was more than five times higher in gregarious than in solitary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号