首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tracing back the N use efficiency of long-term fertilizer trials is important for future management recommendations. Here we tested the changes in natural N-isotope composition as an indicator for N- management within a long-term fertilization lysimeter experiment in a low mountain range pasture ecosystem at Rengen (Eifel Mountains), Germany. Cattle slurry (δ15N?=?8.9?±?0.5‰) and mineral fertilizers (calcium ammonium nitrate; δ15N?=??1.0?±?0.2‰) were applied at a rate between 0 and 480 kg N ha?1?yr?1 throughout 20 years from 1985 onwards. In 2006, samples were taken from different grass species, coarse and fine particulate soil organic matter, bulk soil and leachates. Total soil N content hardly changed during fertilization experiment. As also N leaching has been small within the stagnant water regime, most N was lost through the gaseous phase beside plant uptake and cutting. Unlike N uptake by plants, the process of N volatilization resulted in strong discrimination against the 15N isotope. As a consequence, the δ15N values of top soil samples increased from 1.8?±?0.4‰ to 6.0?±?0.4‰ and that of the plants from ?1.2?±?1.3‰ to 4.8?±?1.2‰ with increasing N fertilizer rate. Samples receiving organic fertilizer were most enriched in δ15N. The results suggest that parts of the fertilizer N signal was preserved in soils and even discovered in soil organic matter pools with slow N turnover. However, a 15N/14N isotope fractionation of up to 1.5‰ added to the δ15N values recovered in soils and plants, rendering the increase in δ15N value a powerful indicator to long-term inefficient N usage and past N management in the terrestrial environment.  相似文献   

2.
We determined the magnitude of isotopic fractionation of carbon and nitrogen stable isotope ratios (as enrichment factors, Δδ13C and Δδ15N, respectively) between the tissues and diets of captive Japanese macaques (Macaca fuscata) using a controlled feeding experiment, to provide basic data for reconstructing their feeding habits. The Δδ13C and Δδ15N values, respectively, were 0.9 ± 0.2 ‰ (mean ± standard deviation, SD) and 3.0 ± 0.3 ‰ for whole blood, 1.3 ± 0.2 ‰ and 4.3 ± 0.3 ‰ for plasma, and 0.8 ± 0.2 ‰ and 3.0 ± 0.2 ‰ for red blood cells. However, the Δδ13C and Δδ15N values for hair were 2.8 ± 0.3 ‰ and 3.4 ± 0.2 ‰, respectively. No difference was detected in the δ13C and δ15N values of hair sampled from different parts of the body. We investigated the effects of diet on δ13C in growing hair by alternating the diet of the macaques each month between two diets that differed markedly in δ13C. Hair regrown after shaving repeatedly recorded the δ13C of the diet consumed during the time of hair growth. On the other hand, hair naturally grown during the diet-change experiment did not show a clear pattern. One possible reason is that the hair had grown abnormally under unnatural indoor conditions and showed complicated isotope signatures. To reconstruct the long-term feeding history of Japanese macaques, we need to further clarify the relationships between the stable isotope signature of diet and various body tissues.  相似文献   

3.
Atmospheric nitrogen deposition poses a major threat to global biodiversity. Tropical epiphytic plants are especially at risk given their reliance on atmospheric sources of nutrients. The leaf, pseudobulb, and root carbon and nitrogen content, C:N ratio, as well as the nitrogen isotopic composition were studied for individuals of Laelia speciosa from a city and from an oak forest in Mexico. The nitrogen content of leaves was similar between the city and the oak forest, reaching 1.3 ± 0.2 % (dry mass). The δ15N of leaves, pseudobulbs, and roots reached 5.6 ± 0.2 ‰ in the city, values found in sites exposed to industrial and vehicular activities. The δ15N for plant from the oak forest amounted to –3.1 ± 0.3 ‰, which is similar to values measured from sites with low industrial activities. Some orchids such as Laelia speciosa produce a single pseudobulb per year, i.e., a water and nutrient storage organ, so the interannual nitrogen deposition was studied by considering the ten most recent pseudobulbs for plants from either site formed between 2003 and 2012. The C:N ratio of the ten most recent pseudobulbs from the oak forest, as well as that of the pseudobulbs formed before 2010 for plants in the city were indistinguishable from each other, averaging 132.4 ± 6.5, while it was lower for the two most recent pseudobulbs in the city. The δ15N values of pseudobulbs from the oak forest averaged ?4.4 ± 0.1 ‰ for the entire series. The δ15N ranged from 0.1 ± 1.6 ‰ for the oldest pseudobulb to 4.7 ± 0.2 ‰ for the pseudobulb formed in the city from 2008 onwards. Isotopic analysis and the C:N ratio for L. speciosa revealed that rates of nitrogen deposition were higher in the city than in the forest. The δ15N values of series of pseudobulbs showed that it is possible to track nitrogen deposition over multiple years.  相似文献   

4.
Nitrogen (N) isotope systematics were investigated at two high-elevation ombrotrophic peat bogs polluted by farming and heavy industry. Our objective was to identify N sources and sinks for isotope mass balance considerations. For the first time, we present a time-series of δ15Ν values of atmospheric input at the same locations as δ15Ν values of living Sphagnum and peat. The mean δ15Ν values systematically increased in the order: input NH4 + (?10.0‰) < input NO3 ? (?7.9‰) < peat porewater (?5.6‰) < Sphagnum (?5.0‰) < shallow peat (?4.2‰) < deep peat (?2.2‰) < runoff (?1.4‰) < porewater N2O (1.4‰). Surprisingly, N of Sphagnum was isotopically heavier than N of the atmospheric input (P < 0.001). If partial incorporation of reactive N from the atmosphere into Sphagnum was isotopically selective, the residual N would have to be isotopically extremely light. Such N, however, was not identified anywhere in the ecosystem. Alternatively, Sphagnum may have contained an admixture of isotopically heavier N. Ambient air contains such N in the form of N215ΝN2 = 0‰). Because high energy is required to break the triple bond, microbial N fixation is likely to proceed only under limited availability of pollutant N. Also for the first time, a δ15Ν comparison is presented between anoxic deeper peat and porewater N2O. Isotopically light N is removed from anoxic substrate by denitrification, whose final product, N2, escapes into the atmosphere. Porewater N2O is an isotopically heavy residuum following partial N2O reduction to N2.  相似文献   

5.

Background and aims

Rhizosphere effect is controlled by spatial distribution of rhizodeposits, which may be influenced by soil aggregation and soil moisture regime in relation to water uptake by roots. The objectives of this study were to measure soil organic carbon (SOC) concentration and its δ13C abundance by aggregate size in the rooted bulk soil and by distance in the root-free soil vertically and horizontally away from roots, and to measure DOC concentration and its δ13C abundance in pore water in the rooted bulk soil after a seasonal pulse labelings of 13CO2 to maize (Zea mays L.).

Methods

Pulse labeling was conducted in the field once a week for 11 weeks. Soil cells (50 mm in diameter and 100 mm long) mimicking root-free soils were imbedded vertically and horizontally 25–50 mm away from the main root of a maize crop. The rooted bulk soils were sampled to extract soil pore water at different suctions and to fractionate aggregates by wet sieving. The root-free soil cells were sliced by 1 mm intervals from the root end to 20 mm away. All the sampling was 12 days after the last labeling after the crop was harvested.

Results and discussion

The δ13C abundance before and after the continuous labeling was ?24.20?±?0.05?‰ and ?23.80?±?0.05?‰ in the rooted bulk soil. The labeling caused increases in δ13C abundance in all the aggregates in the rooted bulk soil and down to 14 mm away from the roots in both the root-free cells. The δ13C abundance was enriched in the >2 mm and 1–2 mm aggregates (?23.17?±?0.12?‰ and ?23.26?±?0.05?‰) though the SOC concentration was not different among the >0.25 mm aggregates, indicating that rhizodeposits or their metabolites were protected and distributed widely in whole soil through soil aggregation. The δ13C abundance in pore water (?24.0?±?0.01?‰) was much lower than those soil aggregates and greatest from the >2 μm soil pores though the DOC concentration was greater from the <20 μm soil pores. The δ13C abundance was in general greater in the horizontal cell than in the vertical cell. The δ13C abundance decreased with the increasing distance to the roots in the vertical cell and peaked at the 5 and 6 mm distance to the roots in the horizontal cell (?23.66?±?0.11?‰ and ?23.5?±?0.10?‰), possibly due to the drier condition unfavorable to microbial decomposition in the horizontal cell. The higher δ13C abundance in the horizontal cell than in the vertical cell was accompanied by a lower SOC concentration and a lower C: N ratio within 3 mm away from the roots, suggesting a stronger priming effect due to the longer residence time of rhizodeposits in the horizontal cell than in the vertical cell.

Conclusions

Rhizodeposits or their metabolites were protected during soil aggregation and distributed to 14 mm beyond the rhizosphere in the natural soil-plant system. This extension is of significance in regulating the formation of soil structure and the priming of soil organic matter during the whole life cycle of plants, which needs further study.  相似文献   

6.

Key message

Eucalyptus and Acacia species were surprisingly similar with respect to variations in δ 13 C, δ 15 N. Both genera respond with speciation and associated changes in leaf structure to drought.

Abstract

Stable carbon and nitrogen isotope ratios (δ13C and δ15N) in leaves of eucalypts (Corymbia and Eucalyptus) and Acacia (and some additional Fabaceae) species were investigated together with specific leaf area (SLA), leaf nitrogen (N) and leaf phosphorous (P) concentration along a north–south transect through Western Australia covering winter- and summer-dominated rainfall between 100 and 1,200 mm annually. We investigated 62 eucalypts and 78 woody Fabaceae species, mainly of the genus Acacia. Leaf δ13C values of Eucalyptus and Acacia species generally increased linearly with latitude from ?29.5 ± 1.3 ‰ in the summer-dominated rainfall zone (15°S–18°S) to about ?25.7 ± 1.1 ‰ in the winter-dominated rainfall zone (29°S–31°S). δ15N increased initially with southern latitudes (0.5 ± 1.6 ‰ at 15°S; 5.8 ± 3.3 ‰ at 24–29°S) but decreased again further South (4.6 ± 3.5 ‰ at 31°S). The variation in δ13C and δ15N was probably due to speciation of Eucalyptus and Acacia into very local populations. There were no species that were distributed over the whole sampling area. The variation in leaf traits was larger between species than within species. Average nitrogen concentrations were 11.9 ± 1.05 mg g?1 in Eucalyptus, and were 18.7 ± 4.1 mg g?1 in Acacia. Even though the average nitrogen concentration was higher in Acacia than Eucalyptus, δ15N gave no clear indication for N2 fixation in Acacia. In a multiple regression, latitude (as a surrogate for rainfall seasonality), mean rainfall, leaf nitrogen concentration, specific leaf area and nitrogen fixation were significant and explained 69 % of the variation of δ13C, but only 36 % of the variation of δ15N. Higher nitrogen and phosphorus concentration could give Acacia an advantage over Eucalyptus in arid regions of undefined rainfall seasonality.  相似文献   

7.
In this study, components of the food-web in Macao wetlands were quantified using stable isotope ratio techniques based on carbon and nitrogen values. The δ13C and δ15N values of particulate organic matter (δ13CPOM and δ15NPOM, respectively) ranged from ?30.64 ± 1.0 to ?28.1 ± 0.7 ‰, and from ?1.11 ± 0.8 to 3.98 ± 0.7 ‰, respectively. The δ13C values of consumer species ranged from ?33.94 to ?16.92 ‰, showing a wide range from lower values in a freshwater lake and inner bay to higher values in a mangrove forest. The distinct dietary habits of consumer species and the location-specific food source composition were the main factors affecting the δ13C values. The consumer 15N-isotope enrichment values suggested that there were three trophic levels; primary, secondary, and tertiary. The primary consumer trophic level was represented by freshwater herbivorous gastropods, filter-feeding bivalves, and plankton-feeding fish, with a mean δ15N value of 5.052 ‰. The secondary consumer level included four deposit-feeding fish species distributed in Fai Chi Kei Bay and deposit-feeding gastropods in the Lotus Flower Bridge flat, with a mean δ15N value of 6.794 ‰. The tertiary consumers group consisted of four crab species, one shrimp species, and four fish species in the Lotus Flower Bridge Flat, with a mean δ15N value of 13.473 ‰. Their diet mainly comprised organic debris, bottom fauna, and rotten animal tissues. This study confirms the applicability of the isotopic approach in food web studies.  相似文献   

8.
Correctly estimating the trophic fractionation factors (Δ15N and Δ13C) in controlled laboratory conditions is essential for the application of stable isotope analysis in studies on the trophic structure of soil communities. Laboratory experiments usually suggest large 15N/14N and small 13C/12C trophic fractionation, but in field studies litter-dwelling microarthropods and other invertebrates are consistently enriched in 13C relative to plant litter. In the present study, we report data from two laboratory experiments investigating both fungi–collembolans and litter–fungi–collembolans systems. In the fungi–collembolans system, Δ15N and Δ13C averaged 1.4 ± 0.1 and 1.0 ± 0.2 ‰, respectively. In microcosms with fungi-inoculated litter, the difference in δ15N between collembolans and plant litter averaged 1.5 ± 0.2 ‰, confirming the relatively small 15N/14N trophic fractionation at the basal level of detrital foodwebs reported in numerous field studies. In full agreement with field observations, the difference in δ13C between bulk litter and collembolans in laboratory microcosms averaged 3.6 ± 0.1 ‰ and only little depended on collembolan species identities or the presence of water-soluble compounds in the litter. We conclude that increased δ13C values typical of litter-dwelling decomposers are largely determined by an increased 13C content in saprotrophic microorganisms.  相似文献   

9.
Forest ecosystem nitrogen (N) response to disturbance has often been examined by space-for-time substitution, but there are few objective tests of the possible variation in disturbance type and intensity across chronosequence sites. We hypothesized that tree ring δ15N, as a record of ecosystem N status, could validate chronosequence assumptions and provide isotopic evidence to corroborate N trends. To test this we measured soil N availability, soil δ15N, and foliar N attributes of overstory Douglas-fir (Pseudotsuga menziesii) and understory western hemlock (Tsuga heterophylla) across three old-growth stands and nine second-growth plantations on southeast Vancouver Island, British Columbia (Canada). Increment cores for wood δ15N were retrieved from three co-dominant Douglas-fir per plot. Bulk soil δ15N was well aligned with both foliar and recent wood δ15N, demonstrating the utility of wood δ15N in monitoring ecosystem N status. Strongly contrasting trends in tree ring δ15N were evident among second-growth stands, with most trees from plantations older than 50 years exhibiting steep declines (3–4‰) in δ15N but with no temporal trends detected for younger plantations. The discrepancy in tree ring δ15N suggests disturbance history varied considerably among second-growth sites, likely because of greater slash loads and hotter broadcast burns on older cutblocks. As a consequence, the pattern of increased soil N availability and foliar N concentration with time since disturbance derived from the chronosequence could not be validated. Tree ring δ15N may provide insights into disturbance intensity, especially fire, and correlations with foliar N concentration could inform the extent of changes in stand nutrition.  相似文献   

10.
Most studies on Arctic food webs have neglected microphytobenthos as a potential food source because we currently lack robust measurements of δ13C values for microphytobenthos from this environment. As a result, the role of microphytobenthos in high latitude marine food webs is not well understood. We combined field measurements of the concentration of aqueous carbon dioxide and the stable carbon isotopic composition of dissolved inorganic carbon (δ13CDIC) from bottom water in the Beaufort and Chukchi seas with a set of stable carbon isotopic fractionation factors reflecting differences in algal taxonomy and physiology to estimate the stable carbon isotope composition of microphytobenthos-derived total organic carbon (δ13Cp). The δ13Cp for Phaeodactylum tricornutum, a pennate diatom likely to be a dominant microphytobenthos taxon, was estimated to be ?23.9 ± 0.4 ‰ as compared to a centric diatom (Porosira glacialis, δ13Cp = ?20.0 ± 1.6 ‰) and a marine haptophyte (Emiliana huxleyi, δ13Cp = ?22.7 ± 0.5 ‰) at a growth rate (µ) of 0.1 divisions per day (d?1). δ13Cp values increased by ~2.5 ‰ when µ increased from 0.1 to a maximum growth rate of 1.4 d?1. We compared our estimates of δ13Cp values for microphytobenthos with published measurements for other carbon sources in the Arctic and sub-Arctic. We found that microphytobenthos values overlapped with pelagic sources, yet differed from riverine and ice-derived carbon sources. These model results provide valuable insight into the range of possible isotopic values for microphytobenthos from this region, but we remain cautious in regard to the conclusiveness of these findings given the paucity of field measurements currently available for model validation.  相似文献   

11.
The foliar stable N isotope ratio (δ15N) can provide integrated information on ecosystem N cycling. Here we present the δ15N of plant and soil in four remote typical tropical rainforests (one primary and three secondary) of southern China. We aimed to examine if (1) foliar δ15N in the study forests is negative, as observed in other tropical and subtropical sites in eastern Asia; (2) variation in δ15N among different species is smaller compared to that in many N-limited temperate and boreal ecosystems; and (3) the primary forest is more N rich than the younger secondary forests and therefore is more 15N enriched. Our results show that foliar δ15N ranged from ?5.1 to 1.3 ‰ for 39 collected plant species with different growth strategies and mycorrhizal types, and that for 35 species it was negative. Soil NO3 ? had low δ15N (?11.4 to ?3.2 ‰) and plant NO3 ? uptake could not explain the negative foliar δ15N values (NH4 + was dominant in the soil inorganic-N fraction). We suggest that negative values might be caused by isotope fractionation during soil NH4 + uptake and mycorrhizal N transfer, and by direct uptake of atmospheric NH3/NH4 +. The variation in foliar δ15N among species (by about 6 ‰) was smaller than in many N-limited ecosystems, which is typically about or over 10 ‰. The primary forest had a larger N capital in plants than the secondary forests. Foliar δ15N and the enrichment factor (foliar δ15N minus soil δ15N) were higher in the primary forest than in the secondary forests, albeit differences were small, while there was no consistent pattern in soil δ15N between primary and secondary forests.  相似文献   

12.

Background and aims

The aim of weed control and fertilization in forest plantations was to increase tree growth by reducing competition for available nutrients and water. However, treatments that influence weed biomass can also have significant impacts on soil carbon (C) and nitrogen (N) cycling which can in turn lead to changes in the dynamics of stable C (δ13C) and N (δ15N) isotope compositions in soils and tree foliage.

Methods

We examined the key C and N cycling processes influenced by routine and luxury weed control and fertilization treatments as reflected by soil and foliar δ13C and δ15N and long-term tree growth in an 8-year old F1 hybrid pine (Pinus elliottii x P. caribaea) plantation in southeast Queensland, Australia. Weed control treatments varied by treatment frequency and intensity while fertilization treatments varied by the application of N, phosphorus (P), potassium (K) and micronutrients. Different soil and canopy sampling positions were assessed to determine if sampling position enhanced the relationships among soil N transformations and tree N use, water use efficiency and carbon gain under the early establishment silviculture.

Results

Routine weed control was associated with increased weed biomass returned to the soil, compared with luxury weed control. Soil δ13C increased at the 0–5 cm soil sampling depth in both the inter-planting (IPR) and planting row (PR) as a result of the routine weed control treatments. In addition, soil δ13C was significantly higher as a result of fertilisation treatment in the 0–5 cm soil sampling depth in the PR. Soil δ13C was negatively correlated to soil δ15N at the 0–5 cm soil sampling depth in the IPR. Soil δ15N increased in the 0–5 and 5–10 cm soil sampling depths in the IPR, as a result of more frequent (luxury) weed control. Foliar δ15N and tree water use efficiency (WUE) (as indicated by foliar δ13C) were positively correlated with tree growth at age 8 years. While relationships between δ13C and δ15N in the soil and foliage varied depending on soil sampling depth and position, and with canopy sampling position where there were consistent relationships between soil δ13C (or δ15N) and foliar δ15N.

Conclusions

This study demonstrates how early establishment silviculture has important implications for soil C and N cycling and how soil δ13C and δ15N were consistent with changes in soil C cycling and N transformations as a result of weed control treatments, while foliar δ15N was linked to more rapid N cycling as reflected in the soil δ15N, which increased tree growth and tree WUE (as reflected by foliar δ13C).
  相似文献   

13.
Isotopic values of two Caribbean sharpnose shark Rhizoprionodon porosus litters (Poey, 1861) with two and three embryos and one litter of 11 smalltail shark Carcharhinus porosus embryos showed enriched 15N and 13C compared to their mothers. In R. porosus, embryonic isotope values were 3.06 ± 0.07‰ and 0.69 ± 0.15‰ greater than their mothers' for δ15N and δ13C, respectively, whereas in C. porosus, δ15N and δ13C were 1.79 ± 0.09‰ and 1.31 ± 0.17‰ greater in embryos than their mothers.  相似文献   

14.

Key message

Large variations in leaf δ 15 N in Bornean tropical rainforest trees may indicate that various tropical species have species-specific strategy for nitrogen uptake under low soil nutrient conditions, including root symbiotic microorganisms such as ectomycorrhiza.

Abstract

Lowland tropical rainforests in Southeast Asia are characterized by high species diversity despite limited soil nutrient conditions. The plant nitrogen isotope ratio (δ15N) reflects plant uptake of soil nitrogen. We analyzed δ15N values and nitrogen content (N %) in leaves and roots of 108 woody species with different types of symbiotic microorganisms, of different life forms (emergent, canopy, sub-canopy, understory, and canopy gap species), and from different families in a Bornean lowland dipterocarp forest to gain more insight into the diversity of nitrogen uptake strategy in the rhizosphere. Leaf δ15N values in the species studied varied largely from ?7.2 to 5.0 ‰, which is comparable to the values of known Asian trees including temperate, sub-tropical, and tropical mountain forests. Leaf δ15N also varied significantly among both life forms and families, though the phylogenetically independent contrast (PIC) relationships were not statistically significant among life form, family, and symbiotic types. Some families showed specific leaf δ15N values; Dipterocarpaceae, the dominant family in the canopy layer with symbiotic ectomycorrhiza in Southeast Asia, had small intraspecific variation and higher leaf δ15N values (0.03 ‰) compared with species exhibiting arbuscular mycorrhiza, whereas several families such as Burseraceae, Euphorbiaceae, and Myrtaceae showed large interspecific variation in leaf δ15N (e.g., from ?7.2 to 5.0 ‰ in Euphorbiaceae). These variations suggest that tropical species may have family- or species-specific strategy, such as root symbiotic microorganisms, for nitrogen uptake under low-nutrient conditions in tropical rainforests in Southeast Asia.
  相似文献   

15.
Determining how marine predators partition resources is hindered by the difficulty in obtaining information on diet and distribution. Stable isotopes (SI) of carbon (13C/12C, δ13C) and nitrogen (15N/14N, δ15N) provide a two‐dimensional estimate of the dietary space of consumers; an animal's isotopic composition is directly influenced by what they consume and where they feed. Harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals are abundant phocid species found in the North Atlantic. We measured and contrasted SI values between seals sampled at nearshore and offshore sites to test for effects of sampling location, sex, age‐class, and body size to gain insight into how these species partition space and prey resources. In addition we contrasted previously published results for gray seals (Halichoerus grypus). Isotope values differed significantly by age class and location in harp and hooded seals. We found significant differences in SI values (mean δ13C and δ15N ± SE) between all species. Hooded seals, a continental shelf‐edge, deep‐diving species, exhibited low SI values (juveniles: ?20.9‰ ± 0.03‰, 13.36‰ ± 0.05‰; adults: ?20.41‰ ± 0.03‰, 14.81‰ ± 0.04‰) characteristic of feeding on meso‐ to bathypelagic prey. Harp seals, which dive to moderate depths primarily on the shelf had intermediate SI values (juveniles: ?20.53‰ ± 0.01‰, 13.91‰ ± 0.01‰; adults: ?20.13‰ ± 0.01‰, 14.96‰ ± 0.01‰) characteristic of feeding on epipelagic prey, whereas gray seals, which feed on or near the sea floor in shallow shelf waters, had high SI values (juveniles: ?19.74‰ ± 0.04‰, 17.51‰ ± 0.05‰; adults: ?18.86‰ ± 0.01‰, 17.23‰ ± 0.02‰) characteristic of feeding on demersal prey. In all species, δ13C values increased with body size and age in the same manner, indicating that seals exploit or forage in deeper habitats as they get larger and older. We hypothesize that the consistent ontogenetic shift in foraging niche, despite large differences between species in their diving behavior, geographic range and habitat use, not only reflects increased access to different prey due to increased diving capacity, but a progressive adjustment to balance energy budgets by reducing foraging costs.  相似文献   

16.
The goals of the study were: (1) to evaluate stable isotopic analysis (SIA) in determining the site fidelity of mummichogs, Fundulus heteroclitus, along a smaller spatial scale (~10?km) in homogenous habitat type relative to previous SIA studies; and (2) to cross-validate SIA results with mark-recapture results from a study conducted concurrently at the same sites in the upper Miramichi River estuary (MRE), New Brunswick, Canada influenced by two pulp mills and three municipal wastewater facilities. Mummichogs sampled at 9 sites along the upper MRE (n?=?198) had overall mean (± SD) ratios of ?21.03?±?1.45 ‰ δ13C and 11.37?±?1.02 ‰ δ15N. Mean δ13C and δ15N ratios were significantly different among sites with mean δ13C increasing in a downstream direction and distinct δ15N group signatures along the northern and southern shores. Multivariate analyses detected seven distinct groups out of nine sites sampled and these differences appear to be related to wastewater treatment influences, thus demonstrating the utility of SIA as a method to determine the site-specificity of organisms on a relatively small spatial scale within homogenous habitat within an estuary. These results, in addition to the scarcity of statistical outliers (3?%) during examination of isotopic ratios within sites support the results of a previous mark-recapture study that demonstrated very few mummichogs (3.4?%) in the upper MRE move more than 200?m.  相似文献   

17.
The amounts, sources and relative ages of inorganic and organic carbon pools were assessed in eight headwater streams draining watersheds dominated by either forest, pasture, cropland or urban development in the lower Chesapeake Bay region (Virginia, USA). Streams were sampled at baseflow conditions six different times over 1 year. The sources and ages of the carbon pools were characterized by isotopic (δ13C and ?14C) analyses and excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). The findings from this study showed that human land use may alter aquatic carbon cycling in three primary ways. First, human land use affects the sources and ages of DIC by controlling different rates of weathering and erosion. Relative to dissolved inorganic carbon (DIC) in forested streams which originated primarily from respiration of young, 14C-enriched organic matter (OM; δ13C = ?22.2 ± 3 ‰; ?14C = 69 ± 14 ‰), DIC in urbanized streams was influenced more by sedimentary carbonate weathering (δ13C = ?12.4 ± 1 ‰; ?14C = ?270 ± 37 ‰) and one of pasture streams showed a greater influence from young soil carbonates (δ13C = ?5.7 ± 2.5 ‰; ?14C = 69 ‰). Second, human land use alters the proportions of terrestrial versus autochthonous/microbial sources of stream water OM. Fluorescence properties of dissolved OM (DOM) and the C:N of particulate OM (POM) suggested that streams draining human-altered watersheds contained greater relative contributions of DOM and POM from autochthonous/microbial sources than forested streams. Third, human land uses can mobilize geologically aged inorganic carbon and enable its participation in contemporary carbon cycling. Aged DOM (?14C = ?248 to ?202 ‰, equivalent14C ages of 1,811–2,284 years BP) and POM (?14C = ?90 to ?88 ‰, 14C ages of 669–887 years BP) were observed exclusively in urbanized streams, presumably a result of autotrophic fixation of aged DIC (?297 to ?244 ‰, 14C age = 2,251–2,833 years BP) from sedimentary shell dissolution and perhaps also watershed export of fossil fuel carbon. This study demonstrates that human land use may have significant impacts on the amounts, sources, ages and cycling of carbon in headwater streams and their associated watersheds.  相似文献   

18.
A proper assessment of the foraging habits of the Guadalupe fur seal (GFS; Arctocephalus townsendi) is a priority to better understand its recovery, in which the potential for intraspecific competition for prey and space resources is expected to lead to segregation. This study aimed to determine the foraging habits of different sex and age classes. A total of 146 GFS fur samples was collected at Guadalupe Island, Mexico (2014–2020) for stable isotopes (δ13C and δ15N) analysis. Isotopic areas were created (SIBER package in R). Significant isotopic differences were observed between classes. Male (3.6‰2) and female (3.0‰2) juveniles had the largest isotopic areas due to a greater foraging dispersion. Adult females showed the lowest mean δ15N value (16.1‰ ± 0.5‰) due to foraging trips that are mostly performed towards high latitudes. Except for pups, adult and subadult males presented the highest mean δ15N (17.4‰ ± 0.4‰) and δ13C values (−17.0‰ ± 0.8‰) due to a possible higher trophic level and coastal foraging habits, whereas pups presented the highest mean δ15N value (17.6‰ ± 0.3‰) because of lactation, which reflects their mothers δ15N signal plus their own enrichment. Our findings suggest a segregation explained by differences in life history, energy requirements, and a possible strategy to avoid competition.  相似文献   

19.
Controls of nitrogen isotope patterns in soil profiles   总被引:5,自引:0,他引:5  
To determine the dominant processes controlling nitrogen (N) dynamics in soils and increase insights into soil N cycling from nitrogen isotope (δ15N) data, patterns of 15N enrichment in soil profiles were compiled from studies on tropical, temperate, and boreal systems. The maximum 15N enrichment between litter and deeper soil layers varied strongly with mycorrhizal fungal association, averaging 9.6 ± 0.4‰ in ectomycorrhizal systems and 4.6 ± 0.5‰ in arbuscular mycorrhizal systems. The 15N enrichment varied little with mean annual temperature, precipitation, or nitrification rates. One main factor controlling 15N in soil profiles, fractionation against 15N during N transfer by mycorrhizal fungi to host plants, leads to 15N-depleted plant litter at the soil surface and 15N-enriched nitrogen of fungal origin at depth. The preferential preservation of 15N-enriched compounds during decomposition and stabilization is a second important factor. A third mechanism, N loss during nitrification and denitrification, may account for large 15N enrichments with depth in less N-limited forests and may account for soil profiles where maximum δ15N is at intermediate depths. Mixing among soil horizons should also decrease differences among soil horizons. We suggest that dynamic models of isotope distributions within soil profiles that can incorporate multiple processes could provide additional information about the history of nitrogen movements and transformations at a site.  相似文献   

20.
In some environments, species may exhibit trophic plasticity, which allows them to extend beyond their assigned functional group. For Gammarus minus, a freshwater amphipod classified as a shredder or detritivore, cave populations have been observed consuming heterotrophs as well as shredding leaves, and therefore may be exhibiting trophic plasticity. To test this possibility, we examined the C and N stable isotope and C/N ratios for cave and spring populations of G. minus. A 15-day feeding experiment using leaves and G. minus from a spring population established that the diet-tissue discrimination factor was 3.2 ‰ for δ15N. Cave G. minus were 8 ‰ higher in δ15N relative to cave leaves, indicating they did not derive nitrogen from leaves, whereas field collected spring populations were 2–3 ‰ higher than spring leaves, indicating that they did. Cave G. minus were 2.6 ‰ higher in δ15N than the cave isopod, Caecidotea holsingeri. Relative to spring populations, Organ Cave G. minus were 15N enriched by 6 ‰, suggesting they occupied a different trophic level, or incorporated an isotopically distinct N source. While stable isotopes cannot tell what the cave G. minus are eating, the isotopes certainly show that G. minus are not eating leaves and are trophically distinct form the surface populations. Differences in C/N ratios were observed, but reflect the size of the G. minus examined and not feeding group or habitat. The isotope data strongly support the hypothesis that cave populations of G. minus have become generalist or omnivorous by including animal protein in their diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号