首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change is having a significant impact on ecosystem services and is likely to become increasingly important as this phenomenon intensifies. Future impacts can be difficult to assess as they often involve long timescales, dynamic systems with high uncertainties, and are typically confounded by other drivers of change. Despite a growing literature on climate change impacts on ecosystem services, no quantitative syntheses exist. Hence, we lack an overarching understanding of the impacts of climate change, how they are being assessed, and the extent to which other drivers, uncertainties, and decision making are incorporated. To address this, we systematically reviewed the peer‐reviewed literature that assesses climate change impacts on ecosystem services at subglobal scales. We found that the impact of climate change on most types of services was predominantly negative (59% negative, 24% mixed, 4% neutral, 13% positive), but varied across services, drivers, and assessment methods. Although uncertainty was usually incorporated, there were substantial gaps in the sources of uncertainty included, along with the methods used to incorporate them. We found that relatively few studies integrated decision making, and even fewer studies aimed to identify solutions that were robust to uncertainty. For management or policy to ensure the delivery of ecosystem services, integrated approaches that incorporate multiple drivers of change and account for multiple sources of uncertainty are needed. This is undoubtedly a challenging task, but ignoring these complexities can result in misleading assessments of the impacts of climate change, suboptimal management outcomes, and the inefficient allocation of resources for climate adaptation.  相似文献   

2.
An ecosystem is generally sustained by a set of integrated physical elements forming a functional landscape unit—ecotope, which supplies nutrients, microclimate, and exchanges matter and energy with the wider environment. To better predict environmental change effects on ecosystems, particularly in critically sensitive regions such as high altitudes, it is imperative to recognise how their natural landscape heterogeneity works at different scales to shape habitats and sustain biotic communities prior to major changes. We conducted a comprehensive survey of catchment physical, geological and ecological properties of 380 high-altitude lakes and ponds in the axial Pyrenees at a variety of scales, to formulate and test an integrated model encompassing major flows and interactions that drive lake ecosystems. Three composite drivers encompassed most of the variability in lake catchment characteristics. In order of total percentage of variance explained, they were (i) hydrology/hydrodynamics—responsible for type and discharge of inlets/outlets, and for waterbody size; (ii) bedrock geomorphology, summarising geology, slope and fractal order—all dictating vegetation cover of catchment slope and lake shore, and the presence of aquatic vegetation; and (iii) topography, that is, catchment formation type—driving lakes connectivity, and the presence of summer snow deposits. Although driver (i) appeared to be local, (ii) and (iii) showed gradient changes along altitude and latitude. These three drivers differentiated several lake ecotopes based on their landscape similarities. The three-driver model was successfully tested on a riparian vegetation composition dataset, further illustrating the validity and fundamental nature of the concept. The findings inform on the relative contribution of scale-dependent catchment physical elements to lake ecotope and ecosystem formation in high-altitude lakes, which should be considered in any assessment of potentially major deleterious effects due to environmental/climate change.  相似文献   

3.
Ulvan EM  Finstad AG  Ugedal O  Berg OK 《Oecologia》2012,168(1):277-287
One of the major challenges in ecological climate change impact science is to untangle the climatic effects on biological interactions and indirect cascading effects through different ecosystems. Here, we test for direct and indirect climatic drivers on competitive impact of Arctic char (Salvelinus alpinus L.) on brown trout (Salmo trutta L.) along a climate gradient in central Scandinavia, spanning from coastal to high-alpine environments. As a measure of competitive impact, trout food consumption was measured using 137Cs tracer methodology both during the ice-covered and ice-free periods, and contrasted between lakes with or without char coexistence along the climate gradient. Variation in food consumption between lakes was best described by a linear mixed effect model including a three-way interaction between the presence/absence of Arctic char, season and Secchi depth. The latter is proxy for terrestrial dissolved organic carbon run-off, strongly governed by climatic properties of the catchment. The presence of Arctic char had a negative impact on trout food consumption. However, this effect was stronger during ice-cover and in lakes receiving high carbon load from the catchment, whereas no effect of water temperature was evident. In conclusion, the length of the ice-covered period and the export of allochthonous material from the catchment are likely major, but contrasting, climatic drivers of the competitive interaction between two freshwater lake top predators. While future climatic scenarios predict shorter ice-cover duration, they also predict increased carbon run-off. The present study therefore emphasizes the complexity of cascading ecosystem effects in future effects of climate change on freshwater ecosystems.  相似文献   

4.
Marine ecosystems can experience regime shifts, in which they shift from being organized around one set of mutually reinforcing structures and processes to another. Anthropogenic global change has broadly increased a wide variety of processes that can drive regime shifts. To assess the vulnerability of marine ecosystems to such shifts and their potential consequences, we reviewed the scientific literature for 13 types of marine regime shifts and used networks to conduct an analysis of co-occurrence of drivers and ecosystem service impacts. We found that regime shifts are caused by multiple drivers and have multiple consequences that co-occur in a non-random pattern. Drivers related to food production, climate change and coastal development are the most common co-occurring causes of regime shifts, while cultural services, biodiversity and primary production are the most common cluster of ecosystem services affected. These clusters prioritize sets of drivers for management and highlight the need for coordinated actions across multiple drivers and scales to reduce the risk of marine regime shifts. Managerial strategies are likely to fail if they only address well-understood or data-rich variables, and international cooperation and polycentric institutions will be critical to implement and coordinate action across the scales at which different drivers operate. By better understanding these underlying patterns, we hope to inform the development of managerial strategies to reduce the risk of high-impact marine regime shifts, especially for areas of the world where data are not available or monitoring programmes are not in place.  相似文献   

5.
There is growing concern that harmful cyanobacterial blooms are increasing in frequency and occurrence around the world. Although nutrient enrichment is commonly identified as a key predictor of cyanobacterial abundance and dominance in freshwaters, several studies have shown that variables related to climate change can also play an important role. Based on our analysis of the literature, we hypothesized that temperature or water‐column stability will be the primary drivers of cyanobacterial abundance in stratified lakes whereas nutrients will be the stronger predictors in frequently mixing water bodies. To test this hypothesis, as well as quantify the drivers of cyanobacteria over different scales and identify interactions between nutrients and climate‐related variables, we applied linear and nonlinear mixed‐effect modeling techniques to seasonal time‐series data from multiple lakes. We first compared time series of cyanobacterial dominance to a published lake survey and found that the models were similar. Using time‐series data of cyanobacterial biomass, we identified important interactions among nutrients and climate‐related variables; dimictic basin experienced a heightened susceptibility to cyanobacterial blooms under stratified eutrophic conditions, whereas polymictic basins were less sensitive to changes in temperature or stratification. Overall, our results show that due to predictable interactions among nutrients and temperature, polymictic and dimictic lakes are expected to respond differently to future climate warming and eutrophication.  相似文献   

6.
Humans are altering global environment at an unprecedented rate through changes in biodiversity, climate, nitrogen cycle, and land use. To address their effects on ecosystem functioning, experiments most frequently explore one driver at a time and control as many confounding factors as possible. Yet, which driver exerts the largest influence on ecosystem functioning and whether their relative importance changes among systems remain unclear. We analyzed experiments in the Patagonian steppe that evaluated the aboveground net primary production (ANPP) response to manipulated gradients of species richness, precipitation, temperature, nitrogen fertilization (N), and grazing intensity. We compared the effect on ANPP relative to ambient conditions considering intensity and direction of manipulations for each driver. The ranking of responses to drivers with comparable manipulation intensity was as follows: biodiversity>grazing>precipitation>N. For a similar intensity of manipulation, the effect of biodiversity loss was 4.0, 3.6, and 1.5, times larger than N deposition, decreased precipitation, and increased grazing intensity. We interpreted our results considering two hypotheses. First, the response of ANPP to changes in precipitation and biodiversity is saturating, so we expected larger effects when the driver was reduced, relative to ambient conditions, than when it was increased. Experimental manipulations that reduced ambient levels had larger effects than those that increased them. Second, the sensitivity of ANPP to each driver is inversely related to the natural variability of the driver. In Patagonia, the ranking of natural variability of drivers is as follows: precipitation>grazing>temperature>biodiversity>N. So, in general, the ecosystem was most sensitive to drivers that varied the least. Comparable results from Cedar Creek (MN) support both hypotheses and suggest that sensitivity to drivers varies among ecosystem types. Given the importance of understanding ecosystem sensitivity to predict global‐change impacts, it is necessary to design new experiments located in regions with contrasting natural variability and that include the full range of drivers.  相似文献   

7.
Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.  相似文献   

8.
Demand for woody biomass fuels is increasing amidst concerns about global energy security and climate change, but there may be negative implications of increased harvesting for forest ecosystem functions and their benefits to society (ecosystem services). Using new methods for assessing ecosystem services based on long-term experimental research, post-harvest changes in ten potential benefits were assessed for ten first-order northern hardwood forest watersheds at three long-term experimental research sites in northeastern North America. As expected, we observed near-term tradeoffs between biomass provision and greenhouse gas regulation, as well as tradeoffs between intensive harvest and the capacity of the forest to remediate nutrient pollution. In both cases, service provision began to recover along with the regeneration of forest vegetation; in the case of pollution remediation, the service recovered to pre-harvest levels within 10 years. By contrast to these two services, biomass harvesting had relatively nominal and transient impacts on other ecosystem services. Our results are sensitive to empirical definitions of societal demand, including methods for scaling societal demand to ecosystem units, which are often poorly resolved. Reducing uncertainty around these parameters can improve confidence in our results and increase their relevance for decision-making. Our synthesis of long-term experimental studies provides insights on the social-ecological resilience of managed forest ecosystems to multiple drivers of change.  相似文献   

9.
An extension of the floodpulse concept (FPC) for lakes   总被引:2,自引:0,他引:2  
This paper delivers a conceptual framework for the ecological functioning and biodiversity patterns of lakes that is based on the floodpulse concept (FPC). The specific characteristics of rivers and lakes considering water-level fluctuations are compared, with respect to catchment linkages, temporal patterns, and hydraulic forces of flooding and drawdown. The influences of floodpulses on element cycles, biodiversity, and adaptations of lake biota are analyzed, and the importance of multi-annual flooding cycles is highlighted. The degree by which these water-level fluctuations influence lake ecosystems strongly depends on lake morphology, where shallow lakes or those with large shallow margins are the most sensitive. Although floodpulses play a major role for ecosystem services such as lake management and climate change mitigation schemes, this issue is only scarcely dealt with. Tenets of the extended FPC for lakes are formulated in order to overcome this problem.  相似文献   

10.
The Great Lakes of East Africa are among the world’s most important freshwater ecosystems. Despite their importance in providing vital resources and ecosystem services, the impact of regional and global environmental drivers on this lacustrine system remains only partially understood. We make a systematic comparison of the dynamics of the bio-optical and thermal properties of thirteen of the largest African lakes between 2002 and 2011. Lake surface temperatures had a positive trend in all Great Lakes outside the latitude of 0° to 8° south, while the dynamics of those lakes within this latitude range were highly sensitive to global inter-annual climate drivers (i.e. El Niño Southern Oscillation). Lake surface temperature dynamics in nearly all lakes were found to be sensitive to the latitudinal position of the Inter Tropical Convergence Zone. Phytoplankton dynamics varied considerably between lakes, with increasing and decreasing trends. Intra-lake differences in both surface temperature and phytoplankton dynamics occurred for many of the larger lakes. This inter-comparison of bio-optical and thermal dynamics provides new insights into the response of these ecosystems to global and regional drivers.  相似文献   

11.
夏楚瑜  国淏  赵晶  薛飞  王楚玥  周珺  孙彤  李淞  张念慈 《生态学报》2023,43(7):2756-2769
大规模的城镇化导致了城市不断扩张,给生态系统造成了巨大的压力。以京津冀地区为例,分析了2000—2020年间京津冀地区城镇化与生态系统服务的变化以及二者间的关系,并探讨了这种关系在栅格尺度、县域尺度、市域尺度上的尺度效应以及变化规律。利用InVEST模型对所选取的4项生态系统服务指标进行量化,并运用皮尔逊相关性分析和地理加权回归来检验其与4项城镇化指标间的关系。研究结果表明(1)随着京津冀地区城镇化的发展除碳储量下降了0.8%外其余生态系统服务均有所提升,其中生境质量增加0.8%、水分产量增加了68%、土壤保持能力增长了35.7%而粮食产量增长近三倍。(2)生态系统服务与城镇化间存在显著相关性(P<0.01),且相关性在县域尺度上最为显著。其中产水量与4项城镇化指标均呈现正相关,粮食产量、碳储量、土壤保持量及生境质量均与4项城镇化指标均呈现负相关。(3)地理加权回归结果表明,城镇化指标与生态系统服务仅在县域尺度上拟合度较好且具有明显的聚集趋势,其中城市用地占比与碳储量、粮食产量全域拟合度最高分别为0.42与0.63。在针对生态系统服务的管理上不同区域需要制定不同的政策,同时需要对...  相似文献   

12.
Land‐cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land‐cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981–1985 and 2001–2005 are correlated with land‐cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land‐cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land‐cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated with heterogeneity in species occurrence changes. We provide empirical evidence showing that land‐cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction.  相似文献   

13.
This paper reviews vegetation and climate reconstructions for different time scales based on palynological studies in China. It discusses examples of significant developments in palynological research topics within China: (1) Modern pollen—a modern pollen database (East Asia Surface Pollen Database) has been established through the collaboration of Chinese palynologists. Based on these data, modern pollen distributions and their quantitative relationship with vegetation and climate have been thoroughly studied. (2) Pre-Quaternary vegetation and climate dynamics—scientists have mapped pollen and palaeobotanical data from the Palaeogene. The vegetation distributions confirm a north–south zonal pattern during the Palaeogene that changed to an east–west monsoonal pattern during the Miocene and Pliocene. These results provide key evidence for understanding monsoon evolution. (3) Late-Quaternary vegetation—biome reconstructions based on fossil pollen data show spatial and temporal changes in vegetation since the Last Glacial Maximum, permitting a better understanding of climate change across China. (4) Quantitative climate reconstructions—some reconstructions have successfully detected Holocene climate variability thereby providing insights into monsoon history. At present, there are no comprehensive spatial reconstructions. Major possible future developments should focus on: (1) long-term vegetation reconstructions from lakes to study Asian monsoon dynamics at orbital scales; (2) quantitative reconstructions of vegetation and climate change to help stronger integration with palaeoclimate models and dynamic vegetation models; (3) land-cover and land-use change across China over the last 6,000 years to understand human impacts and provide empirical data for climate modellers; and (4) integration of pollen data with vegetation and climate modelling to understand the CO2-vegetation relationship and climate dynamics.  相似文献   

14.
Urbanization involves a cocktail of human‐induced rapid environmental changes and is forecasted to gain further importance. Urban‐heat‐island effects result in increased metabolic costs expected to drive shifts towards smaller body sizes. However, urban environments are also characterized by strong habitat fragmentation, often selecting for dispersal phenotypes. Here, we investigate to what extent, and at which spatial scale(s), urbanization drives body size shifts in macro‐moths—an insect group characterized by positive size‐dispersal links—at both the community and intraspecific level. Using light and bait trapping as part of a replicated, spatially nested sampling design, we show that despite the observed urban warming of their woodland habitat, macro‐moth communities display considerable increases in community‐weighted mean body size because of stronger filtering against small species along urbanization gradients. Urbanization drives intraspecific shifts towards increased body size too, at least for a third of species analysed. These results indicate that urbanization drives shifts towards larger, and hence, more mobile species and individuals in order to mitigate low connectivity of ecological resources in urban settings. Macro‐moths are a key group within terrestrial ecosystems, and since body size is central to species interactions, such urbanization‐driven phenotypic change may impact urban ecosystem functioning, especially in terms of nocturnal pollination and food web dynamics. Although we show that urbanization's size‐biased filtering happens simultaneously and coherently at both the inter‐ and intraspecific level, we demonstrate that the impact at the community level is most pronounced at the 800 m radius scale, whereas species‐specific size increases happen at local and landscape scales (50–3,200 m radius), depending on the species. Hence, measures—such as creating and improving urban green infrastructure—to mitigate the effects of urbanization on body size will have to be implemented at multiple spatial scales in order to be most effective.  相似文献   

15.
Understanding the responses of biodiversity to drivers of change and the effects of biodiversity on ecosystem properties and ecosystem services is a key challenge in the context of global environmental change. We performed a systematic review and meta‐analysis of the scientific literature linking direct drivers of change and ecosystem services via functional traits of three taxonomic groups (vegetation, invertebrates, and vertebrates) to: (1) uncover trends and research biases in this field; and (2) synthesize existing empirical evidence. Our results show the existence of important biases in published studies related to ecosystem types, taxonomic groups, direct drivers of change, ecosystem services, geographical range, and the spatial scale of analysis. We found multiple evidence of links between drivers and services mediated by functional traits, particularly between land‐use changes and regulating services in vegetation and invertebrates. Seventy‐five functional traits were recorded in our sample. However, few of these functional traits were repeatedly found to be associated with both the species responses to direct drivers of change (response traits) and the species effects on the provision of ecosystem services (effect traits). Our results highlight the existence of potential “key functional traits,” understood as those that have the capacity to influence the provision of multiple ecosystem services, while responding to specific drivers of change, across a variety of systems and organisms. Identifying “key functional traits” would help to develop robust indicator systems to monitor changes in biodiversity and their effects on ecosystem functioning and ecosystem services supply.  相似文献   

16.
Knowledge of how ecosystem carbon (C) processes respond to variations in precipitation is crucial for assessing impacts of climate change on terrestrial ecosystems. In this study, we examined variations of shoot and root biomass, standing and surface litter, soil respiration, and soil C content along a natural precipitation gradient from 430 to 1200 mm in the southern Great Plains, USA. Our results show that shoot biomass and soil respiration increased linearly with mean annual precipitation (MAP), whereas root biomass and soil C content remained relatively constant along the precipitation gradient. Consequently, the root/shoot ratio linearly decreased with MAP. However, patterns of standing, surface, and total litter mass followed quadratic relationships with MAP along the gradient, likely resulting from counterbalance between litter production and decomposition. Those linear/quadratic equations describing variations of ecosystem C processes with precipitation could be useful for model development, parameterization, and validation at landscape and regional scales to improve predictions of C dynamics in grasslands in response to climate change. Our results indicated that precipitation is an important driver in shaping ecosystem functioning as reflected in vegetation production, litter mass, and soil respiration in grassland ecosystems.  相似文献   

17.
Our planet is facing a variety of serious threats from climate change that are unfolding unevenly across the globe. Uncovering the spatial patterns of ecosystem stability is important for predicting the responses of ecological processes and biodiversity patterns to climate change. However, the understanding of the latitudinal pattern of ecosystem stability across scales and of the underlying ecological drivers is still very limited. Accordingly, this study examines the latitudinal patterns of ecosystem stability at the local and regional spatial scale using a natural assembly of forest metacommunities that are distributed over a large temperate forest region, considering a range of potential environmental drivers. We found that the stability of regional communities (regional stability) and asynchronous dynamics among local communities (spatial asynchrony) both decreased with increasing latitude, whereas the stability of local communities (local stability) did not. We tested a series of hypotheses that potentially drive the spatial patterns of ecosystem stability, and found that although the ecological drivers of biodiversity, climatic history, resource conditions, climatic stability, and environmental heterogeneity varied with latitude, latitudinal patterns of ecosystem stability at multiple scales were affected by biodiversity and environmental heterogeneity. In particular, α diversity is positively associated with local stability, while β diversity is positively associated with spatial asynchrony, although both relationships are weak. Our study provides the first evidence that latitudinal patterns of the temporal stability of naturally assembled forest metacommunities across scales are driven by biodiversity and environmental heterogeneity. Our findings suggest that the preservation of plant biodiversity within and between forest communities and the maintenance of heterogeneous landscapes can be crucial to buffer forest ecosystems at higher latitudes from the faster and more intense negative impacts of climate change in the future.  相似文献   

18.
Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data‐based evaluations of emergent ecosystem responses to climate and CO2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO2 in ten ecosystem models with the sensitivities found in tree‐ring reconstructions of NPP and raw ring‐width series at six temperate forest sites. These model‐data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree‐ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm‐growing season temperatures, while tree‐ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO2, but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the feedbacks with moisture balance and CO2 in individual models.  相似文献   

19.
High-frequency measurements are increasingly available and used to model ecosystem processes. This growing capability provides the opportunity to resolve key drivers of ecosystem processes at a variety of scales. We use a unique series of high-frequency measures of potential predictors to analyze daily variation in rates of gross primary production (GPP), respiration (R), and net ecosystem production (NEP = GPP − R) for two north temperate lakes. Wind speed, temperature, light, precipitation, mixed layer depth, water column stability, chlorophyll a, chromophoric dissolved organic matter (CDOM), and zooplankton biomass were measured at daily or higher-frequency intervals over two summer seasons. We hypothesized that light, chlorophyll a, and zooplankton biomass would be strongly related to variability in GPP. We also hypothesized that chlorophyll a, CDOM, and temperature would be most strongly related to variability in R, whereas NEP would be related to variation in chlorophyll a and CDOM. Consistent with our hypotheses, chlorophyll a was among the most important drivers of GPP, R, and NEP in these systems. However, multiple regression models did not necessarily include the other variables we hypothesized as most important. Despite the large number of potential predictor variables, substantial variance remained unexplained and models were inconsistent between years and between lakes. Drivers of GPP, R, and NEP were difficult to resolve at daily time scales where strong seasonal dynamics were absent. More complex models with greater integration of physical processes are needed to better identify the underlying drivers of short-term variability of ecosystem processes in lakes and other systems.  相似文献   

20.
Coastal embayments are at risk of impacts by climate change drivers such as ocean warming, sea level rise and alteration in precipitation regimes. The response of the ecosystem to these drivers is highly dependent on their magnitude of change, but also on physical characteristics such as bay morphology and river discharge, which play key roles in water residence time and hence estuarine functioning. These considerations are especially relevant for bivalve aquaculture sites, where the cultured biomass can alter ecosystem dynamics. The combination of climate change, physical and aquaculture drivers can result in synergistic/antagonistic and nonlinear processes. A spatially explicit model was constructed to explore effects of the physical environment (bay geomorphic type, freshwater inputs), climate change drivers (sea level, temperature, precipitation) and aquaculture (bivalve species, stock) on ecosystem functioning. A factorial design led to 336 scenarios (48 hydrodynamic × 7 management). Model outcomes suggest that the physical environment controls estuarine functioning given its influence on primary productivity (bottom‐up control dominated by riverine nutrients) and horizontal advection with the open ocean (dominated by bay geomorphic type). The intensity of bivalve aquaculture ultimately determines the bivalve–phytoplankton trophic interaction, which can range from a bottom‐up control triggered by ammonia excretion to a top‐down control via feeding. Results also suggest that temperature is the strongest climate change driver due to its influence on the metabolism of poikilothermic organisms (e.g. zooplankton and bivalves), which ultimately causes a concomitant increase of top‐down pressure on phytoplankton. Given the different thermal tolerance of cultured species, temperature is also critical to sort winners from losers, benefiting Crassostrea virginica over Mytilus edulis under the specific conditions tested in this numerical exercise. In general, it is predicted that bays with large rivers and high exchange with the open ocean will be more resilient under climate change when bivalve aquaculture is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号