首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-medical students are certainly a widely varied group, with different motivations and experiences, different skills sets and interests. However, they often tend to approach their undergraduate education as a necessary evil that they must endure in order to achieve their ultimate goals. This article summarizes recent literature addressing some of the questions that have been raised regarding pre-medical education programs. Are students prepared for the intellectual, emotional, and even physical challenges of medical training? What deficiencies are commonly seen in entering medical students? What are students’ perceptions of how well their pre-medical studies helped them? Many of these studies have resulted in a call for more science training, while some have advocated for less, but with an enhanced focus on humanistic studies. We supply a brief outline of our Evolutionary Studies (EvoS) program and reflect upon how participation in this program can enhance pre-medical students’ education. Importantly, we argue that EvoS can expand students’ depth of understanding of science, as well as nurture their ability to think about the needs of their patients and the context of their medical practice.  相似文献   

2.
Advanced micrometeorological methods have become increasingly important in soil, crop, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Surface renewal and other flux measurement methods require an understanding of boundary layer meteorology and extensive training in instrumentation and multiple data management programs. To improve accessibility of these techniques, we describe the underlying theory of surface renewal measurements, demonstrate how to set up a field station for surface renewal with eddy covariance calibration, and utilize our open-source turnkey data logger program to perform flux data acquisition and processing. The new turnkey program returns to the user a simple data table with the corrected fluxes and quality control parameters, and eliminates the need for researchers to shuttle between multiple processing programs to obtain the final flux data. An example of data generated from these measurements demonstrates how crop water use is measured with this technique. The output information is useful to growers for making irrigation decisions in a variety of agricultural ecosystems. These stations are currently deployed in numerous field experiments by researchers in our group and the California Department of Water Resources in the following crops: rice, wine and raisin grape vineyards, alfalfa, almond, walnut, peach, lemon, avocado, and corn.  相似文献   

3.
This study used sociocultural learning theory to better understand how middle and high school environmental science and biology students and pre- and in-service science teachers connect the daily life activity of eating to the food web model learned in school. We sought to understand how student and teacher perceptions of the environment and their experiences influenced their responses to interview questions regarding this topic. Findings, based on transcribed interviews with 54 study participants, indicate that three quarters of teachers and students were unable to connect the food they eat with ecosystem food webs. Even so, many respondents particularly those from elite public schools, did not demonstrate common food web misconceptions identified by other researchers, instead showing a sophisticated understanding of food web interactions. These findings indicate that even though participants were proficient in their school science understanding of food web interactions, they did not readily think about how their everyday out of school activities, like eating, relate to those interactions. This may be representative of a more general disconnect between formal ecology instruction and daily life activities. We provide several recommendations for how this disconnect can be remedied in our classrooms.  相似文献   

4.
Science students increasingly need programming and data science skills to be competitive in the modern workforce. However, at our university (San Francisco State University), until recently, almost no biology, biochemistry, and chemistry students (from here bio/chem students) completed a minor in computer science. To change this, a new minor in computing applications, which is informally known as the Promoting Inclusivity in Computing (PINC) minor, was established in 2016. Here, we present the lessons we learned from our experience in a set of 10 rules. The first 3 rules focus on setting up the program so that it interests students in biology, chemistry, and biochemistry. Rules 4 through 8 focus on how the classes of the program are taught to make them interesting for our students and to provide the students with the support they need. The last 2 rules are about what happens “behind the scenes” of running a program with many people from several departments involved.  相似文献   

5.
Botanists benefit from a scientifically literate society and an interested and botanically literate student population, and we have opportunities to promote literacy in our classes. Unfortunately, scientific illiteracy exists, in part, because students are technologically advanced but lack intellectual curiosity and rigor. Botanical illiteracy results from several interacting factors, including a lack of interest in plants and infrequent exposure to plant science before students reach college. If scientific or botanical literacy is a goal, we must understand what literacy means and how we can help students reach that goal. A model of biological literacy recognizes four levels; students enter courses at the lowest level possessing misconceptions about concepts; however, misconceptions can be used to our advantage, especially by using concept inventories. Inquiry-based instruction is advocated for all science courses, and learning theory supports inquiry. Seven principles of learning inform recommendations about how botanists should teach, including using themes and "thinking botanically" to illustrate all biological concepts. Overall, consideration of the botanical content taught is less critical than the methods used to teach that content. If botanists emphasize thinking and process skills with an understanding of concepts, we will prepare scientifically literate students and citizens and benefit from our efforts.  相似文献   

6.
Australia's ecosystems are the basis of our current and future prosperity, and our national well‐being. A strong and sustainable Australian ecosystem science enterprise is vital for understanding and securing these ecosystems in the face of current and future challenges. This Plan defines the vision and key directions for a national ecosystem science capability that will enable Australia to understand and effectively manage its ecosystems for decades to come. The Plan's underlying theme is that excellent science supports a range of activities, including public engagement, that enable us to understand and maintain healthy ecosystems. Those healthy ecosystems are the cornerstone of our social and economic well‐being. The vision guiding the development of this Plan is that in 20 years' time the status of Australian ecosystems and how they change will be widely reported and understood, and the prosperity and well‐being they provide will be secure. To enable this, Australia's national ecosystem science capability will be coordinated, collaborative and connected. The Plan is based on an extensive set of collaboratively generated proposals from national town hall meetings that also form the basis for its implementation. Some directions within the Plan are for the Australian ecosystem science community itself to implement, others will involve the users of ecosystem science and the groups that fund ecosystem science. We identify six equal priority areas for action to achieve our vision: (i) delivering maximum impact for Australia: enhancing relationships between scientists and end‐users; (ii) supporting long‐term research; (iii) enabling ecosystem surveillance; (iv) making the most of data resources; (v) inspiring a generation: empowering the public with knowledge and opportunities; (vi) facilitating coordination, collaboration and leadership. This shared vision will enable us to consolidate our current successes, overcome remaining barriers and establish the foundations to ensure Australian ecosystem science delivers for the future needs of Australia.  相似文献   

7.
Environmental indicators can be used to target public programs to provide a variety of benefits. Social scientists, physical scientists, and politicians have roles in developing indicators that reflect the demands of diverse interest groups. We review the US Department of Agriculture’s Conservation Reserve Program (CRP), the largest agricultural conservation program the United States, to determine how a set of environmental indicators were developed and used, and assess results of their application. The use of such indicators has helped the CRP increase and broaden the program’s environmental benefits beyond erosion reduction, which was the primary focus of early program efforts, to meet other demands. This case study provides an example about how integration and assessment for the purpose of managing public resources requires more than natural science disciplines. Social science can help explain how public values influence what information is collected and how it is interpreted. Examples are given to show how the indices used for the CRP integrated science, politics and social values. In the end, the environmental benefits index (EBI) used to target US$ 20 billion of CRP funds reflects compromises made between science and policy considerations. It is our intention that studying this index will yield ideas and understanding from the natural science community that develops ecosystem indices about how to better plug in to programs in the future.  相似文献   

8.
Many students reject evolutionary theory, whether or not they adequately understand basic evolutionary concepts. We explore the hypothesis that accepting evolution is related to understanding the nature of science. In particular, students may be more likely to accept evolution if they understand that a scientific theory is provisional but reliable, that scientists employ diverse methods for testing scientific claims, and that relating data to theory can require inference and interpretation. In a study with university undergraduates, we find that accepting evolution is significantly correlated with understanding the nature of science, even when controlling for the effects of general interest in science and past science education. These results highlight the importance of understanding the nature of science for accepting evolution. We conclude with a discussion of key characteristics of science that challenge a simple portrayal of the scientific method and that we believe should be emphasized in classrooms.  相似文献   

9.
Has the science of ecology fulfilled the promises made by the originators of ecological science at the start of the last century? What should ecology achieve? Have good policies for environmental management flowed out of ecological science? These important questions are rarely discussed by ecologists working on detailed studies of individual systems. Until we decide what we wish to achieve as ecologists we cannot define progress toward those goals. Ecologists desire to achieve an understanding of how the natural world operates, how humans have modified the natural world, and how to alleviate problems arising from human actions. Ecologists have made impressive gains over the past century in achieving these goals, but this progress has been uneven. Some sub-disciplines of ecology are well developed empirically and theoretically, while others languish for reasons that are not always clear. Fundamental problems can be lost to view as ecologists fiddle with unimportant pseudo-problems. Bandwagons develop and disappear with limited success in addressing problems. The public demands progress from all the sciences, and as time moves along and problems get worse, more rapid progress is demanded. The result for ecology has too often been poor, short-term science and poor management decisions. But since the science is rarely repeated and the management results may be a generation or two down the line, it is difficult for the public or for scientists to decide how good or bad the scientific advice has been. In ecology over the past 100 years we have made solid achievements in behavioural ecology, population dynamics, and ecological methods, we have made some progress in understanding community and ecosystem dynamics, but we have made less useful progress in developing theoretical ecology, landscape ecology, and natural resource management. The key to increasing progress is to adopt a systems approach with explicit hypotheses, theoretical models, and field experiments on a scale defined by the problem. With continuous feedback between problems, possible solutions, relevant theory and experimental data we can achieve our scientific goals.  相似文献   

10.
Since 2010, the European Molecular Biology Laboratory''s (EMBL) Heidelberg laboratory and the European Bioinformatics Institute (EMBL-EBI) have jointly run bioinformatics training courses developed specifically for secondary school science teachers within Europe and EMBL member states. These courses focus on introducing bioinformatics, databases, and data-intensive biology, allowing participants to explore resources and providing classroom-ready materials to support them in sharing this new knowledge with their students.In this article, we chart our progress made in creating and running three bioinformatics training courses, including how the course resources are received by participants and how these, and bioinformatics in general, are subsequently used in the classroom. We assess the strengths and challenges of our approach, and share what we have learned through our interactions with European science teachers.  相似文献   

11.
Medical students have much to gain by understanding how evolutionary principles affect human health and disease. Many theoretical and experimental studies have applied lessons from evolutionary biology to issues of critical importance to medical science. A firm grasp of evolution and natural selection is required to understand why the human body remains vulnerable to many diseases. Although we often integrate evolutionary concepts when we teach medical students and residents, the vast majority of medical students never receive any instruction on evolution. As a result, many trainees lack the tools to understand key advances and miss valuable opportunities for education and research. Here, we outline some of the evolutionary principles that we wished we had learned during our medical training.  相似文献   

12.
Habitats and the ecosystem services they provide are part of the world’s portfolio of natural capital assets. Like many components of this portfolio, it is difficult to assess the full economic value of these services, which tends to over-emphasize the value of extractive activities such as coastal development. Building on recent ecological studies of species–habitat linkages, we use a bioeconomic model to value multiple types of habitats as natural capital, using mangroves, sea grass, and coral reefs as our model system. We show how key ecological variables and processes, including obligate and facultative behaviors map into habitat values and how the valuation of these ecological processes can inform decisions regarding coastal development (habitat clearing). Our stylized modeling framework also provides a clear and concise road map for researchers interested in understanding how to make the link between ecosystem function, ecosystem service, and conservation policy decisions. Our findings also highlight the importance of additional ecological research into how species utilize habitats and that this research is not just important for ecological science, but it can and will influence ecosystem service values that, in turn, will impact coastal land-use decisions. While refining valuation methods is not necessarily going to lead to more rational coastal land-use decisions, it will improve our understanding on the ecological–economic mechanisms that contribute to the value of our natural capital assets. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Several groups of people are essential for effectively teaching the theory of evolution in public schools. Teachers of course are at the leading edge of educating students. However, school district administrators, school boards, state education officers, and university professors all play critical roles in this endeavor. Whereas scientific discoveries and teacher training typically occur at the university level, it is school district leaders and teachers who actually disseminate this information in a way that creates an educated population of students. In this study, we introduce a partnership focused on strengthening evolution education in Utah’s public schools. Our program centers on the importance of evolution as an applied science and one that can be readily integrated throughout the biology curriculum. Our 2-day workshop—conducted in each Utah school district—brings together elected school board members, school district administrators, public school science teachers, and university professors to overcome barriers that can arise when teaching the theory of evolution as part of the 7–12 public school curriculum.  相似文献   

14.
At present, the disciplines of evolutionary biology and ecosystem science are weakly integrated. As a result, we have a poor understanding of how the ecological and evolutionary processes that create, maintain, and change biological diversity affect the flux of energy and materials in global biogeochemical cycles. The goal of this article was to review several research fields at the interfaces between ecosystem science, community ecology and evolutionary biology, and suggest new ways to integrate evolutionary biology and ecosystem science. In particular, we focus on how phenotypic evolution by natural selection can influence ecosystem functions by affecting processes at the environmental, population and community scale of ecosystem organization. We develop an eco-evolutionary model to illustrate linkages between evolutionary change (e.g. phenotypic evolution of producer), ecological interactions (e.g. consumer grazing) and ecosystem processes (e.g. nutrient cycling). We conclude by proposing experiments to test the ecosystem consequences of evolutionary changes.  相似文献   

15.
Mass mortality events (MMEs) are rapidly occurring, substantial population losses that transpire within a short time interval relative to the generation time of the affected organism. Previous work has established that MMEs appear to be increasing in frequency and magnitude; however, currently, there is little understanding of the consequences of MMEs for biological communities. Here, we use theory and empirical data from observed MMEs to understand how MMEs impact the structure and dynamics of communities. To do so, we build upon existing resource pulse and trophic cascade theory to show that MMEs both share similarities and diverge from these ecological phenomena, producing distinct short‐ and long‐term impacts by jointly altering the effects of species interactions across trophic levels and providing an influx of resources from decaying biomass. Second, we investigate how the magnitude of MMEs, trophic level of the impacted species, overall food web structure and ecosystem type may mediate the resulting ecological response. Third, we compare the understanding gained by our models to existing observational data on MMEs. Our synthesis, offers an empirical path forward for understanding MMEs through experimentation and improved observational data collection. While complex, resolving the consequences of MMEs should be a high research priority due to their role in determining how ecological systems respond to environmental change driven by rare events.  相似文献   

16.
John Pastor 《Ecosystems》2017,20(2):245-252
One of the most important scientific problems about which we are profoundly ignorant is how ecosystem processes change as populations evolve. These changes in ecosystem processes are propelled by evolutionary changes in organism traits and in turn may exert additional selection pressures on the evolving populations. Understanding these feedbacks between ecosystem and evolutionary processes is a challenge for evolutionary and ecosystem theory and experiments in the 21st century. This essay reviews some recent empirical and theoretical studies which are beginning to shed light on the complexity of these feedbacks and makes suggestions for future directions and the training of the next generation of students.  相似文献   

17.
COVID‐19 created a host of challenges for science education; in our case, the pandemic halted our in‐person elementary school outreach project on bird biology. This project was designed as a year‐long program to teach fifth‐grade students in Ithaca, New York, USA, about bird ecology and biodiversity using in‐person presentations, games, activities, and outdoor demonstrations. As a central part of this effort, we set up nest boxes on school property and planned to monitor them with students during bird breeding in the spring. Here, we describe our experiences transitioning this program online: we live streamed nest boxes to the students’ virtual classroom and used them as a focal point for virtual lessons on bird breeding and nestling development. In an era of social distancing and isolation, we propose that nest box live streaming and virtual lessons can support communities by providing access to the outdoors and unconventional science learning opportunities for all students. Instituting similar programs at local schools has the potential to increase equitable learning opportunities for students across geographic locations and with varying degrees of physical access to the outdoors and nature.  相似文献   

18.
Artificial Intelligence (AI) has the power to improve our lives through a wide variety of applications, many of which fall into the healthcare space; however, a lack of diversity is contributing to limitations in how broadly AI can help people. The UCSF AI4ALL program was established in 2019 to address this issue by targeting high school students from underrepresented backgrounds in AI, giving them a chance to learn about AI with a focus on biomedicine, and promoting diversity and inclusion. In 2020, the UCSF AI4ALL three-week program was held entirely online due to the COVID-19 pandemic. Thus, students participated virtually to gain experience with AI, interact with diverse role models in AI, and learn about advancing health through AI. Specifically, they attended lectures in coding and AI, received an in-depth research experience through hands-on projects exploring COVID-19, and engaged in mentoring and personal development sessions with faculty, researchers, industry professionals, and undergraduate and graduate students, many of whom were women and from underrepresented racial and ethnic backgrounds. At the conclusion of the program, the students presented the results of their research projects at the final symposium. Comparison of pre- and post-program survey responses from students demonstrated that after the program, significantly more students were familiar with how to work with data and to evaluate and apply machine learning algorithms. There were also nominally significant increases in the students’ knowing people in AI from historically underrepresented groups, feeling confident in discussing AI, and being aware of careers in AI. We found that we were able to engage young students in AI via our online training program and nurture greater diversity in AI. This work can guide AI training programs aspiring to engage and educate students entirely online, and motivate people in AI to strive towards increasing diversity and inclusion in this field.  相似文献   

19.
Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management.  相似文献   

20.
In this study we designed, implemented, and evaluated an outreach programme for high-school biology students rooted in the ‘science as inquiry’ approach. Accordingly, students learn about science from experts in the field, as well as through in-class exposure to the history and philosophy of science. Our sample consisted of 11th graders (n?=?497), ages 16–17, attending advanced biology classes. Our goal was to determine whether this programme had a significant effect on students’ understanding of the ‘nature of science’ (NOS) and on their attitudes towards science. Using a controlled pre-post research design, we asked participants to complete a Likert-like questionnaire. Also, we conducted post-programme semi-structured interviews with 35 of the participants. Results show that completion of the programme significantly enhanced participants’ NOS understanding and improved their attitudes towards science. Participants expressed a deep level of NOS understanding and explicitly stated that the field visits to experts’ labs had changed their attitude towards science. We believe that our outreach programme can be adapted for teaching other sciences and for societies worldwide, as long as there is access to university laboratories and researchers willing to interact with young citizens and potential future scientists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号