首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many species of gekkotans possess adhesive subdigital pads that allow them to adhere to, and move on, a wide variety of surfaces. The natural surfaces exploited by these lizards may be rough, undulant and unpredictable and therefore likely provide only limited, patchy areas for adhesive contact. Here, we examine the microtopography of rock surfaces used by seven species of Rhoptropus and compare this to several rough and smooth artificial surfaces employed in previous studies of gekkotan adhesion. These data are considered in relation to the form, configuration, compliance and functional morphology of the setal fields of these species. Our results demonstrate that natural rock surfaces are rough and unpredictable at the scale of the setal arrays, with equal amounts of variation existing within and between the various types of rock surfaces examined. Such surfaces differ from smooth and rough artificial surfaces in the proportion of surface area available for attachment and the relative predictability of surface undulance. Generally, setal field characteristics of individual species are not relatable to specific substrates, but instead are configured to allow for sufficient attachment to a wide variety of unpredictable surfaces. Our findings provide insight into the evolution and microanatomy of the adhesive system of gekkotan lizards and its adaptive relationship to topographically unpredictable surfaces.  相似文献   

2.
Although the phenomenon of adhesion in geckos has been intensively studied for over 200 years, our understanding of how the morphological apparatus associated with this arose is less clear. Indeed, whether or not all of the intricate morphological hierarchy that is implicated in the attachment and removal of the adhesive setae originated at the same time is unknown. To explore whether setae may have arisen prior to the other parts of this structural hierarchy, we undertook morphological observations of Gonatodes, an ancestrally padless, sphaerodatyline genus known to exhibit the expression of incipient subdigital pads in some species. Focusing on this geographically and morphologically well‐circumscribed genus, for which intraspecific relationships are adequately known and ecology is quite well documented, allowed us to deduce trends in digit proportions, shape, scalation, and skeletal structure, and associate these with the micro‐ornamentation of the subdigital surfaces. Our findings indicate that in Gonatodes, setae capable of inducing adhesion are present without the modifications of the digital musculotendinous, circulatory and skeletal systems that are generally considered to be necessary for the operation of a functional adhesive apparatus. The acquisition of these latter characteristics (independently in many lineages of gekkotans, and incipiently so in Anolis) may have been preceded by a suite of modifications of the digits that enhanced static clinging in relation to sit‐and‐wait predation and the ability to take refuge on surfaces unavailable to other taxa. These possibilities await further testing. J. Morphol. 276:1311–1332, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Subdigital adhesive pads play an important role in the locomotion of many species of gekkonid lizards. These pads consist of integrated components derived from the epidermis, dermis, vascular system, subcuticular tendons, and phalanges. These components become intimately associated with each other during the developmental differentiation of the digits and the sequence of this integration is outlined herein in Ptyodactylus guttatus. The pads initially appear as paired swellings at the distal tips of the digits. Subsequently, a fan-like array of naked scansors develops on the ventral surface of each digit, at about the same time that scales differentiate over the surface of the foot as a whole. At the time of appearance of the naked scansors, the vascular sinus system of the pad also differentiates, along with subcuticular connective tissue specializations. At this stage the digits, along with the rest of the body, are clad in an embryonic periderm. Only after hatching and as the periderm is shed, do the epidermal setae and spines appear. The developmental sequence described here is consistent with predictions previously advanced about the evolutionary origin and elaboration of subdigital pads in gekkonid lizards. The paucity of available staged embryonic material leaves many questions unresolved.  相似文献   

4.
Geckos with subdigital adhesive pads can scale smooth vertical surfaces in defiance of gravity. The deployment of the adhesive system is activated by the musculoskeletal system during active traverses of such surfaces, but adhesion on such substrata can also be achieved by passive means, with the body weight of the gecko applying tensile loading to the adhesive setae, maintaining prolonged, static contact with the surface. To investigate whether passively induced adhesion is employed by geckos holding station on smooth vertical surfaces, we investigated the magnitude of shear force generation for the manus and pes, and the positioning of the limb segments and digits in Chondrodactylus bibronii in freely selected resting postures (head‐up, head‐down and facing laterally to the left and right). Our results indicate that different subsets of digits occupy positions consistent with them being passively loaded in different body orientations. Limb segment and digit orientation are consistent within, and differ between, the resting postures, and relatively few of the 20 digits are positioned to take advantage of gravitationally induced loading in any posture. The pedal digits have greater adhesive potential than the manual ones and, more frequently, capitalize on passive loading than do manual digits. This is especially evident in the commonly adopted head‐down resting posture.  相似文献   

5.
Paraphalanges of gekkonid lizards are cartilaginous structures associated with interphalangeal joints. Their form and structure have been investigated by dissection, cleared-and-stained specimens, routine histoloty, and radiography. A family-wide survey revealed that paraphalangeal elements occur in at least 57 species in 16 genera of the subfamily Gekkoninae. The distribution and structure of these elements suggests multiple origins among gekkonine geckos. In most instances, they are present in species with expanded subdigital climbing pads, divided scansors, and a markedly raised penultimate phalanx that is elevated from, or free of, the pad. Thus, they seem to be associated with placement of the scansors onto the locomotor substrate. In two genera, Uroplatus and Palmatogecko, paraphalanges at the more proximal interphalangeal joints are associated with muscles that run between them. In these cases, the paraphalanges appear to be involved in grasping abilities of the foot associated with digging and climbing modifications.  相似文献   

6.
Little is known of how the adhesive apparatus of gekkotans scales with growth. Cross‐species comparisons of certain characteristics, using size as a comparator to investigate scaling relationships, suggest certain relationships between subdigital pad area and body size. The manner in which the adhesive apparatus grows and scales within any one species, however, remains unknown, and it is unclear whether interspecific and intraspecific patterns are similar. To address this, we examined a post‐hatching ontogenetic series of the southern African gecko Chondrodactylus bibronii and demonstrate that setal density, setal basal diameter and setal spacing remain relatively constant in relation to size, indicating conserved subdigital pad assembly rules that are independent of size. Conversely, however, average and maximal setal lengths increase slightly and isometrically with size, an outcome that is probably explained by setal row recruitment, and the surface area of the subdigital pads scales close to, but below, isometry with respect to body mass and snout–vent length, it therefore does not increase sufficiently with size to compensate for the increase in mass. As a result, relative adhesive capacity decreases with growth with a regression slope of –0.45.  相似文献   

7.
8.
Anoles of the Anolis onca series represent a dramatic case of retrograde evolution, exhibiting great reduction (A. annectens) and loss (A. onca) of the subdigital pads considered a key innovation for the evolutionary radiation of anoles in arboreal environments. We present a molecular phylogenetic analysis of these anoles and their closest known relatives (A. auratus, A. lineatus, A. meridionalis, and A. nitens) using new mitochondrial DNA sequence data from the ND2 gene, five tRNA genes (tRNA(Trp), tRNA(Ala), tRNA(Asn), tRNA(Cys), tRNA(Tyr)), the origin of light-strand replication, and a portion of the CO1 gene (1,446 aligned base positions, 612 parsimony informative). Our results confirm monophyly of the A. onca series and suggest an evolutionary separation of approximately 10 million years between A. annectens and A. onca. Evolution of subdigital structure in this series illustrates ectopic expression of developmental programs that replace flexible subdigital lamellae of the toepad with rigid, keeled scales resembling dorsal digital scales. Our phylogenetic results indicate that narrowing of the toepad in A. auratus evolved separately from toepad reduction in the A. onca series. Expansion of the subdigital lamellae along the phalanges in A. auratus appears to compensate constriction of lamellae by digital narrowing, maintaining greater climbing capability in this species. Toepad evolution in the lineage ancestral to A. auratus features changes of the same developmental modules as the A. onca series but in the opposite direction. Large molecular distances between geographic populations of A. auratus indicate that its derived toepad structure is at least 9 million years old.  相似文献   

9.
We studied the distribution of lipid material and organelles in the epidermal layers of toe pads from two species of lizards representing the two main lizard families in which adhesive scansors are found (gekkonids and polychrotids), the dull day gecko, Phelsuma dubia and the green anole, Anolis carolinensis. Although lipids are a conspicuous component of the mesos layer of squamate reptiles and function in reducing cutaneous water loss, their distribution has not been specifically studied in the highly elaborated epidermal surface of adhesive toe pads. We found that, in addition to the typical cutaneous water loss‐resistant mesos and alpha‐layer lipids, the Oberhäutchen (including the setae) on the most exterior layers of the epidermis in P. dubia and A. carolinensis also contain lipid material. We also present detailed histochemical and ultrastructural analyses of the toe pads of P. dubia, which indicate that lipid material is closely associated spatially with maturing setae as they branch during the renewal phase of epidermal regeneration. This lipid material appears associated with the packing of keratin within setae, possibly affecting permeability to water loss in the pad lamella, where the surface area is from 4–60‐fold greater compared with normal scales. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
The claws of the gekkonine gecko genus Ailuronyx are unique in being asymmetrically disposed. Those of digits I-III are curved towards the body, whereas those of digits IV and V curve away from the body. This ungual asymmetry is imposed upon the essentially symmetrical pedal morphology that typifies pad-bearing geckos. The resultant functional organization of manus and pes parallels that seen in chameleons. The pedal configuration of Ailuronyx seychellensis appears to provide a mechanical advantage for locomotion on at least some of the animal's natural substrata.  相似文献   

11.
Alibardi L 《Tissue & cell》2003,35(4):288-296
The modified subdigital scales of some lizards allow them to climb vertical surfaces. This is due to the action of millions of tiny setae present in the digital pads. Setae are mainly composed of beta-keratin which may have some modality of aggregation similar to that of barbs and barbules of feathers. Keratins and associated proteins are involved in the organization of setae. The formation of setae in the climbing pad lamellae of the gecko Hemidactylus turcicus has been analyzed under the electron microscope after injection of tritiated histidine and immunocytochemistry for a chick scale beta-keratin. Setae are made up of dense and pale filaments, both oriented along the longer axis of setae. Beta-keratin is present in the oberhautchen layer and in the growing setae which are highly modified oberhautchen cells. Most of the immunolabeling concentrated in the central part of setae. This cross-reactivity suggests that some epitopes in chick beta-keratin are also present in gecko setae. Four hours after injection of tritiated histidine, the labeling is localized over setae, in particular in the dense filaments and less in the pale filaments. Some labeling is also seen in the keratinaceous material present in the cytoplasm of clear cells, which are believed to mold setae. The present observations suggest that both beta-keratin and denser matrix proteins, possibly incorporating histidine, are packed into growing setae. These proteins may be mixed to form pale and dense filaments oriented along the longer axis of setae, a pattern resembling that of barb and barbule cells of feathers. The role of matrix material in the orientation of the deposited beta-keratin during setal outgrowth is discussed with the problem of barb and barbule differentiation in avian feathers.  相似文献   

12.
Adhesive toe pads of geckos house modified components of vascular and/or connective tissues that promote conformity of the setal fields with the locomotor substratum. Similar modifications have been claimed for the digits of Anolis, but evidence for them is not compelling. Angiographic and histological investigations of Anolis failed to identify any evidence of either an intralamellar vascular reticular network or a central sinus. Instead, their vascularity more closely resembles that of lizards in general than that of pad‐bearing geckos. The loose connective tissue of the toe pads likely contributes to their general pliability and flexibility, promoting localized compliance with the substratum. Through the shedding cycle, the lamellae change shape as the replacing setae elongate. The outer epidermal generation lacunar cells on the inner lamellar faces simultaneously hypertrophy, providing for compatibility between overlapping lamellae, enabling reciprocity between them. This contributes to continuing compliance of the setal fields with the substratum. Overall, digital structure and attachment and release kinematics of the toe pads of Anolis are very similar to those of geckos exhibiting an incipient adhesive mechanism. Both lack major anatomical specializations for promoting conformity of the setae with the locomotor substratum beyond those of the seta‐bearing portions of the epidermis.  相似文献   

13.
Climbing assisted by adhesive subdigital pads in gekkotan lizardshas been the subject of intrigue and study for centuries. Manyhypotheses have been advanced to explain the mechanism of adhesion,and recently this phenomenon has been investigated at the levelof individual setae. The ability to isolate, manipulate andrecord adhesive forces from individual setae has provided newinsights, not only into the mechanism of attachment, but alsointo the physical orientation of these structures necessaryto establish attachment, maximize adhesive force, and effectsubsequent release. This, in turn, has enabled a reassessmentof the overall morphology and mode of operation of the adhesivesystem. Digital hyperextension has often been noted as a behavioralcharacteristic associated with the deployment of the gekkotanadhesive system—this is now understandable in the contextof setal attachment and release kinematics, and in the contextof the evolution of this pattern of digital movement from theprimitive pattern of saurian digital kinematics. The perpendicularand parallel preloads associated with setal attachment are nowreconcilable with other morphological aspects of the gekkotanadhesive system—the lateral digital tendon complex andthe vascular sinus network, respectively. Future investigationsof the integrated adhesive system will help to further elucidatethe interdependence of its structural and functional components.  相似文献   

14.
The trigeminal jaw adductor musculature of anilioid snakes is analysed. The group is characterised by primitive characters, viz. the presence of an extensive bodenaponeurosis and of a quadrate aponeurosis. A temporal tendon gives rise to superficial (lb) fibres which are not observed in other snakes: this may be a primitive or a derived feature.
Jaw adductor muscles in snakes are usually subdivided following their relative position in an antero–posterior direction. Lacertilian jaw adductors are subdivided in a transverse plane. A detailed comparison of the anilioid and primitive lacertilian jaw adductors establishes correspondences (homologies) of parts in the transverse plane in both groups. These homologies are corroborated by innervational patterns.
Platynotan lizards are widely accepted as potential snake ancestors. A comparison of homologue jaw adductors shows different evolutionary trends to characterise platynotan lizards and snakes. Theoretically, these findings do not rule out primitive platynotan lizards as snake ancestors. On the basis of the structure of jaw adductors, snakes are to be derived from a primitive lacertilian pattern, be it platynotan or not.  相似文献   

15.
The mouse conceptus is generally held to be radially symmetrical about its embryonic-abembryonic axis from the blastocyst stage until the primitive streak appears at the beginning of gastrulation. However, this notion has been challenged by recent observations on conceptuses sectioned in utero which suggest that the blastocyst is already bilaterally symmetrical when it begins to implant. Accordingly, the blastocyst has been assigned an anterior-posterior axis which appears to persist through gastrulation and is claimed to coincide with the anterior-posterior axis of the future fetus in both orientation and polarity. In the present investigation the relationship between these two axes was examined in conceptuses dissected from the uterus early in gastrulation so that it could be determined more accurately than is possible in situ. The anterior-posterior axis of the conceptus and nascent fetus were found to be either parallel or antiparallel to each other, suggesting that while the orientation of the fetal axis may be specified at the blastocyst stage its polarity is not.  相似文献   

16.
The digital adhesive pads that allow gecko lizards to climb vertical surfaces result from the modification of the oberhautchen layer of the epidermis in normal scales. This produces sticky filaments of 10–100 μm in length, called setae that are composed of various proteins. The prevalent types, termed corneous beta proteins (CBPs), have a low molecular weight (12–20 kDa) and contain a conserved central region of 34 amino acids with a beta-conformation. This determines their polymerization into long beta-filaments that aggregate into corneous beta-bundles that form the framework of setae. Previous studies showed that the prevalent CBPs in the setae of Gekko gecko are cysteine-rich and are distributed from the base to the tip of adhesive setae, called spatulae. The molecular analysis of these proteins, although the three-dimensional structure remains undetermined, indicates that most of them are charged positively and some contain aromatic amino acids. These characteristics may impede adhesion by causing the setae to stick together but may also potentiate the van der Waals interactions responsible for most of the adhesion process on hydrophobic or hydrophilic substrates. The review stresses that not only the nanostructural shape and the high number of setae present in adhesive pads but also the protein composition of setae influence the strength of adhesion to almost any type of substrate. Therefore, formulation of dry materials mimicking gecko adhesiveness should also consider the chemical nature of the polymers utilized to fabricate the future dry adhesives in order to obtain the highest performance.  相似文献   

17.
The general organization of the rectum is constant in all termites. The six rectal pads are composed of two layers, principal and basal cells, and are surrounded by very narrow junctional cells. This organization is very similar to that previously described in cockroaches of the phylum Blattoidea. However, important variations occur, which seem related both to the phylogenetic position and the biology of the species. The most variable feature is the degree of differentiation of the principal cells and in particular the development of mitochondrial-scalariform junction (MS) complexes. Other variations concern the penetration of the tracheae into the pads and the development of the intercellular sinus, the number of junctional cells, the presence of neurosecretory-like fibers in the subepithelial sinus. In the primitive wood-inhabiting termites, especially the family Kalotermitidae (dry-wood termites), maximal complexity is attained; the similarity with the cockroaches probably reflects a primitive condition. In this category, the variations are clearly related to the dryness of the habitat. The more evolved termites establish a network of subterranean galleries and so are able to collect water from the depths of the soil. Correlatively, their rectal pads are more or less reduced. The degree of simplification appears related more to the phylogenetic position than to the habitat. In the course of evolution of the Isoptera, the hydromineral regulation tended to be increasingly achieved through social behaviour, at the expense of individual physiology.  相似文献   

18.
Locomotion on horizontal and vertical substrates requires effective attachment systems. In three clades of arboreal and rupicolous Iguanidae, Gekkota and Scincidae adhesive systems consisting of microscopic hair‐like structures (setae) have been evolved independently. Also the substrate contacting sites on toes and tails of chameleons (Chamaeleonidae) are covered with setae. In the present comparative scanning electron microscopy study, we show that representatives from the chamaeleonid genera Calumma, Chamaeleo, Furcifer, and Trioceros feature highly developed setae that are species‐specific and similar on their feet and tail. These 10 μm long, unbranched setae rather resemble those in anoline and scincid lizards than the larger and branched setae of certain gecko species. In contrast to the thin triangular tips of other lizards, all examined species of the genera Furcifer and Calumma and one of the five examined species of the genus Trioceros have spatulate tips. All other examined species of genera Trioceros and Chamaeleo bear setae with narrowed, fibrous tips. Unlike the setae of other lizards, chamaeleonid setal tips do not show any orientation along the axis of the toes, but they are flexible to bend in any direction. With these differences, the chameleon's unique microstructures on the zygodactylous feet and prehensile tail rather increase friction for arboreal locomotion than being a shear‐induced adhesive system as setal pads of other lizards. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Many animals possess adhesive pads on their feet,which are able to attach to various substrates while controlling adhesive forces during locomotion.This review article studies the morphology of adhesive devices in animals,and the physical mechanisms of wet adhesion and dry adhesion.The adhesive pads are either ‘smooth' or densely covered with special adhesive setae.Smooth pads adhere by wet adhesion,which is facilitated by fluid secreted from the pads,whereas hairy pads can adhere by dry adhesion or wet adhesion.Contact area,distance between pad and substrate,viscosity and surface tension of the liquid filling the gap between pad and substrate are the most important factors which determine the wet adhesion.Dry adhesion was found only in hairy pads,which occurs in geckos and spiders.It was demonstrated that van der Waals interaction is the dominant adhesive force in geckos' adhesion.The bio-inspired applications derived from adhesive pads are also reviewed.  相似文献   

20.
Members of the carphodactyline gekkonoid genera Naultinus, Hoplodactylus, Bavayia, Eurydactylodes, Rhacodactylus, and Pseudothecadactylus possess tails that are both prehensile and adhesive. In New Caledonian and Australian species of this group, the adhesive apparatus forms a discrete and grossly observable scansorial pad. The caudal scansorial system appears to show a phylogenetic trend towards increasing complexity. The caudal scansors closely parallel the subdigital scansors in surface morphology and bear branched setae and mechanoreceptive sensillae. Internal morphology also resembles that of the toe, although a tendinous system is absent and the mechanism of pressurization of the vascular network of the tail tip remains unclear. Despite obvious differences in basic organization of tails and toes, the caudal and digital scansors in these taxa appear to be iterative homologues of one another. J. Morphol. 235:41–58, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号