首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SHI (short internodes) is a negative regulator of gibberellin-induced cell elongation. Extensive searches in the Brassica rapa genome allowed for the prediction of at least six different SHI-related genes on six chromosomes in the genome. Genome structural examination revealed that these genes had one intron each in their corresponding open reading frames. Protein structure comparisons using the CLUSTALW program and based on alignments of all BrSRS (B. r apa SHI-related sequence) proteins revealed broad conservation of the RING finger-like zinc finger and IGGH motifs. According to the phylogenetic relationship based on deduced amino acid sequences, the six BrSRS proteins were most closely related to Arabidopsis SRS (AtSRS) proteins; however, BrSRS proteins were dispersed in the phylogenetic tree. Semi-quantitative RT-PCR analysis indicated that the six BrSRS genes exhibited different expression patterns in various tissues and responded differently to growth phytohormones. The differences among the six BrSRS genes with respect to gene structure and expression pattern suggest that these genes may play diverse physiological roles in the developmental process of B. rapa.  相似文献   

2.
Two novel techniques improve division and colony formation from protoplasts:
  1. Plating in agarose stimulates colony formation of protoplasts from a wide range of species. Protoplasts from Nicotiana tabacum developed to colonies from lower initial population densities in agarose than in agar or liquid. Protoplasts from Hyoscyamus muticus which do not divide in agar divided and formed colonies in agarose at higher efficiencies than in liquid medium.
  2. Culture of gel embedded protoplasts in large volumes of liquid medium on a gyrotatory shaker (‘bead culture’) further improved plating efficiencies in some species (e.g. Lycopersicon esculentum and Crepis capillaris) and enabled sustained proliferation of protoplasts which had not previously developed beyond the few cell colony stage (Brassica rapa and a mutator gene variety of Petunia hybrida).
The combination of ‘agarose plating’ and ‘bead culture’ dramatically improved plating efficiencies of protoplasts in all species tested.  相似文献   

3.
4.
Cuticular wax is a complex mixture of very-long-chain fatty acid derivatives. The wax on the surface of plants serves as a protective barrier to reduce non-stomatal water loss and environmental damage. However, the loss of wax may lead to a glossy phenotype, which is an favorable trait in leafy vegetables. The mechanism of glossy mutants in non-heading Chinese cabbage (Brassica rapa L. var. communis) has not been studied yet. In this study, scanning electron microscopy (SEM) showed that the cuticular wax on the leaves and stem of a glossy mutant was dramatically reduced compared with that of the wild-type plant. Transmission electron microscopy (TEM) revealed that the cuticle ultrastructure of glossy mutant leaf and stem were altered when compared with the wild type. A cuticle wax analysis showed the total wax content of leaves, as well as alkanes, ketones and alcohols, was decreased. A genetic analysis indicated that the glossy phenotype was controlled by a single gene. Based on a homology analysis, the Brcer1 gene was identified as the candidate gene controlling the glossy phenotype. In the glossy mutant, a 39-bp deletion leads to an mRNA disruption and reduces the expression of the BrCER1 gene. Sequence analysis showed that a loss of function mutation in the Brcer1 gene was different from that of Cgl1, which was previously shown to be responsible for the glossy phenotype in B. oleracea, showing typical parallel selection. These findings provide a better understanding of the cuticular wax biosynthesis pathway and offer important information for molecular-assisted breeding of non-heading Chinese cabbage (B. rapa L. var. communis).  相似文献   

5.

Background

We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the details of the method's algorithm or a proof of the algorithm.

Results

We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants.

Conclusions

The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants.  相似文献   

6.
Callus tissue culture of Coffea arabica L. cv Hybrido de Timor prepared from apical portions of orthotropic branches produced 49 to 92 times as much caffeine per unit weight of tissue as did the original explant. Cell-free extracts made from 42 to 54-day-old callus cultures in which active biosynthesis was occurring exhibited N-methyl-N 9-nucleoside hydrolase and N-methyltransferase enzyme activities. Similar cell-free extracts exhibited selective biodegradative activity in forming urea from xanthine. Biosynthetic substrate specificities are similar to those of the enzyme obtained from green coffee fruit and tea leaves, suggesting that callus cultures of C. arabica form caffeine in the same way as the coffee fruit and tea leaves.  相似文献   

7.
Zymograms of Arabidopsis alcohol dehydrogenase (ADH; EC 1.1.1.1) show a unique anodal migrating band. Three electrophoretic variants were identified among geographical races and designated slow (S), fast (F), and superfast (A), according to their mobility on Tris-citrate starch gels. In plants ADH activity is confined mainly to pollen, seeds, and grains and rapidly declines during the germination process. In callus and suspension cultures, growing on media containing 2,4-D, ADH appeared as one of the major polypeptides. Genetical analysis indicated that the three types of ADH isozymes are under the control of one gene with three alles (Adh 1 s , Adh 1 f , Adh 1 a ), showing codominant expression. Crosses between the electrophoretic types and dissociation-reassociation experiments showed that the Arabidopsis enzyme behaves as a dimer, like ADH from most other species. The molecular weight of the enzyme has been estimated by gel filtration and by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis to be 87,000. The pH optimum for the oxidation of ethanol is 9.0 and two optima for reduction of acetaldehyde have been obtained, 6.0 and 8.5, respectively. The enzyme exhibits a wide substrate specificity for alcohols and is relatively heat resistant.  相似文献   

8.
Molecular mechanisms of Al tolerance in gramineous plants   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.

Background

Caenorhabditis elegans sarcomeres have been studied extensively utilizing both forward and reverse genetic techniques to provide insight into muscle development and the mechanisms behind muscle contraction. A previous genetic screen investigating early muscle development produced 13 independent mutant genes exhibiting a Pat (paralyzed and arrested elongation at the two-fold length of embryonic development) muscle phenotype. This study reports the identification and characterization of one of those genes, pat-9.

Results

Positional cloning, reverse genetics, and plasmid rescue experiments were used to identify the predicted C. elegans gene T27B1.2 (recently named ztf-19) as the pat-9 gene. Analysis of pat-9 showed it is expressed early in development and within body wall muscle lineages, consistent with a role in muscle development and producing a Pat phenotype. However, unlike most of the other known Pat gene family members, which encode structural components of muscle attachment sites, PAT-9 is an exclusively nuclear protein. Analysis of the predicted PAT-9 amino acid sequence identified one putative nuclear localization domain and three C2H2 zinc finger domains. Both immunocytochemistry and PAT-9::GFP fusion expression confirm that PAT-9 is primarily a nuclear protein and chromatin immunoprecipitation (ChIP) experiments showed that PAT-9 is present on certain gene promoters.

Conclusions

We have shown that the T27B1.2 gene is pat-9. Considering the Pat-9 mutant phenotype shows severely disrupted muscle attachment sites despite PAT-9 being a nuclear zinc finger protein and not a structural component of muscle attachment sites, we propose that PAT-9 likely functions in the regulation of gene expression for some necessary structural or regulatory component(s) of the muscle attachment sites.  相似文献   

11.
Extraction of a maize culture of a toxinogenic strain ofA. wentii led to the isolation and characterization of three anthraquinones, three bianthrones, a xanthone and a benzophenone. The structures were derived from spectroscopic data and were supported by chemical degradation. Of these, emodin, 1,6-di-0-methylemodin, 5-0-methylsulochrine and 1,3-di-0-methylemodin bianthrone were mildly toxic to ducklings.  相似文献   

12.

Background

Combination of CHD (chromo-helicase-DNA binding protein)-specific polymerase chain reaction (PCR) with electrophoresis (PCR/electrophoresis) is the most common avian molecular sexing technique but it is lab-intensive and gel-required. Gender determination often fails when the difference in length between the PCR products of CHD-Z and CHD-W genes is too short to be resolved.

Results

Here, we are the first to introduce a PCR-melting curve analysis (PCR/MCA) to identify the gender of birds by genomic DNA, which is gel-free, quick, and inexpensive. Spilornis cheela hoya (S. c. hoya) and Pycnonotus sinensis (P. sinensis) were used to illustrate this novel molecular sexing technique. The difference in the length of CHD genes in S. c. hoya and P. sinensis is 13-, and 52-bp, respectively. Using Griffiths' P2/P8 primers, molecular sexing failed both in PCR/electrophoresis of S. c. hoya and in PCR/MCA of S. c. hoya and P. sinensis. In contrast, we redesigned sex-specific primers to yield 185- and 112-bp PCR products for the CHD-Z and CHD-W genes of S. c. hoya, respectively, using PCR/MCA. Using this specific primer set, at least 13 samples of S. c. hoya were examined simultaneously and the Tm peaks of CHD-Z and CHD-W PCR products were distinguished.

Conclusion

In this study, we introduced a high-throughput avian molecular sexing technique and successfully applied it to two species. This new method holds a great potential for use in high throughput sexing of other avian species, as well.  相似文献   

13.
The self-incompatibility type is of key importance to understanding pollination in orchards, because most olive cultivars are partially self-incompatible and thus require pollinizers to ensure fruit set. The gametophytic model has been advocated to function in the olive, but no allele pair has been attributed to any variety. The GSI model failed in most combinations to explain fruit set. Olive growers must screen experimentally and empirically to look for inter-compatible pair-wise combinations of varieties for optimum pollination. The sporophytic model, with given dominance relationships for six S-alleles matches 98 % of the experimental data of the two sets investigated. We propose a method to analyze data from controlled crosses between olive cultivars applied to two experiments for varieties crossed in a diallel design. Furthermore, the dominance between the S-allele pair allows rational prediction of olive variety self-incompatibility levels. The S-allele pairs were unraveled for more than 60 cultivars. To go further, crosses between reference varieties—those in which the S-allele pair was unraveled—and varieties under experimentation (VarE) with an unknown S-allele pair will enable an increase in knowledge and the choice of the best pollinizers in silico. Nevertheless, we pose outstanding questions in orchards where open-pollination efficiency with varieties harboring the R2R3, R1R3, R1R5, or R3R5 pairs. These S-allele pairs require pollen grains without R2 or R3 , R1 or R3, and R3 or R5 determinants. Such pollinizer varieties are not abundant in France and Italy, and this questions whether their spread is sufficient for optimal pollination of main varieties.  相似文献   

14.
Heat stress severely affects plant growth and development causing crop loss worldwide. Classical type I DnaJ proteins (also called as J-proteins, J-domain proteins or HSP40 proteins) function as molecular co-chaperones for the HSP70 proteins. In this study, we have cloned and characterized a novel gene GmDjp1 (G lycine m ax DnaJ protein 1) encoding a type III J-protein of which function has not been identified in plant. Deduced amino acid sequences of GmDjp1 show the highest homology with a J-protein from Medicago truncatula legume plant (83 %) and with Arabidopsis thaliana type III J-class proteins, atDjC53 (77 %) and atDjC32 (50 %). DNA blot analysis revealed that GmDjp1 exists as a 2-copy gene in soybean genome. GmDjp1 mRNA was induced by a broad spectrum of abiotic stresses, including wounding, heat-shock, dehydration, cold or high-salinity stress, suggesting its role in the signaling events in the abiotic stress-related defense response. Subcellular localization studies demonstrated that the GmDjp1-GFP fusion protein was localized in the nucleus. Differential RNA expression of GmDjp1 by heat-shock stress inspired us to test heat-shock tolerance of GmDjp1in E. coli. Heterologous expression of GmDjp1 conferred tolerance to high temperature stress in E. coli. This report provides strong evidence that GmDjp1 may play a critical role during heat-shock stress in cell.  相似文献   

15.
16.
The cuticular wax covering epidermal cells causes the glaucous appearance in cabbage. As a protective barrier, cuticular wax plays various roles in protection against biotic and abiotic stresses. This is the first gene mapping report of a dominant glossy green cabbage mutant. In the present paper, scanning electron microscopy (SEM) demonstrated that the wax crystals were severely reduced in the mutant, which indicates that the glossy green phenotype is caused by cuticular wax reduction. Genetic analysis revealed that the glossy trait is controlled by a single dominant gene. Through primer screening and fine mapping, the mutant gene BoGL1 (Brassica oleracea glossy 1) was delimited to the end of chromosome C08 by the flanking marker SSRC08–76 at a genetic distance of 0.2 cM. Two genes homologous to CER1 (ECERIFERUM 1), a gene related to wax biosynthesis in Arabidopsis, were located in the mapped region. Expressional analysis revealed that the Bol018504 gene was severely suppressed but that no nucleotide variation was found by sequencing. These results lay the foundation for the functional analysis of BoGL1, and they will accelerate the research on wax metabolism in cabbage.  相似文献   

17.
18.
19.
Combining multidetector computed tomography and cardiovascular magnetic resonance imaging provides the clinician a strategy to comprehensively evaluate coronary morphology and function noninvasively. In the MARCC trial (Magnetic Resonance and CT in suspected CAD) a new noninvasive diagnostic work-up for patients with suspected coronary artery disease will be developed, involving the sequential use of both imaging techniques. (Neth Heart J 2010;18:270-3.)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号