共查询到20条相似文献,搜索用时 15 毫秒
1.
Lacking an adaptive immune system, plants largely rely on plasma membrane‐resident pattern recognition receptors (PRRs) to sense pathogen invasion. The activation of PRRs leads to the profound immune responses that coordinately contribute to the restriction of pathogen multiplication. Protein post‐translational modifications dynamically shape the intensity and duration of the signalling pathways. In this review, we discuss the specific regulation of PRR activation and signalling by protein ubiquitination, endocytosis and degradation, with a particular focus on the bacterial flagellin receptor FLS2 (flagellin sensing 2) in Arabidopsis. 相似文献
2.
Plant innate immunity is activated either upon perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) or upon resistance (R) protein-mediated recognition of pathogen race-specific effector molecules. Although many plant R proteins have been identified, there is only limited knowledge about plant PRRs. Recently, Cyril Zipfel et al. identified a second Arabidopsis leucine-rich repeat receptor protein kinase implicated in PAMP perception, which suggests that several members of this large protein family function as pattern recognition receptors. 相似文献
3.
4.
《Cell》2023,186(15):3261-3276.e20
5.
Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. 总被引:18,自引:0,他引:18
The innate immune system recognizes microorganisms through a series of pattern recognition receptors that are highly conserved in evolution. Insects have a family of 12 peptidoglycan recognition proteins (PGRPs) that recognize peptidoglycan, a ubiquitous component of bacterial cell walls. We report cloning of three novel human PGRPs (PGRP-L, PGRP-Ialpha, and PGRP-Ibeta) that together with the previously cloned PGRP-S, define a new family of human pattern recognition molecules. PGRP-L, PGRP-Ialpha, and PGRP-Ibeta have 576, 341, and 373 amino acids coded by five, seven, and eight exons on chromosomes 19 and 1, and they all have two predicted transmembrane domains. All mammalian and insect PGRPs have at least three highly conserved C-terminal PGRP domains located either in the extracellular or in the cytoplasmic (or in both) portions of the molecules. PGRP-L is expressed in liver, PGRP-Ialpha and PGRP-Ibeta in esophagus (and to a lesser extent in tonsils and thymus), and PGRP-S in bone marrow (and to a lesser extent in neutrophils and fetal liver). All four human PGRPs bind peptidoglycan and Gram-positive bacteria. Thus, these PGRPs may play a role in recognition of bacteria in these organs. 相似文献
6.
7.
8.
9.
《Autophagy》2013,9(9):1082-1084
The leucine-rich repeats (LRR)-containing domain is evolutionarily conserved in many proteins associated with innate immunity in plants, invertebrates and vertebrates. Serving as a first line of defense, the innate immune response is initiated through the sensing of pathogen-associated molecular patterns (PAMPs). In plants, NBS (nucleotide-binding site)-LRR proteins provide recognition of pathogen products of avirulence (AVR) genes. LRRs also promote interaction between LRR proteins as observed in receptor-coreceptor complexes. In mammals, toll-like receptors (TLRs) and NOD-like receptors (NLRs) through their LRR domain, sense molecular determinants from a structurally diverse set of bacterial, fungal, parasite and viral-derived components. In humans, at least 34 LRR proteins are implicated in diseases. Most LRR domains consist of 2–45 leucine-rich repeats, with each repeat about 20–30 residues long. Structurally, LRR domains adopt an arc or horseshoe shape, with the concave face consisting of parallel β-strands and the convex face representing a more variable region of secondary structures including helices. Apart from the TLRs and NLRs, most of the 375 human LRR proteins remain uncharacterized functionally. We incorporated computational and functional analyses to facilitate multifaceted insights into human LRR proteins and outline a few approaches here. 相似文献
10.
The leucine-rich repeats (LRR)-containing domain is evolutionarily conserved in many proteins associated with innate immunity in plants, invertebrates and vertebrates. Serving as a first line of defense, the innate immune response is initiated through the sensing of pathogen-associated molecular patterns (PAMPs). In plants, NBS (nucleotide-binding site)-LRR proteins provide recognition of pathogen products of avirulence (AVR) genes. LRRs also promote interaction between LRR proteins as observed in receptor-coreceptor complexes. In mammals, toll-like receptors (TLRs) and NOD-like receptors (NLRs) through their LRR domain, sense molecular determinants from a structurally diverse set of bacterial, fungal, parasite and viral-derived components. In humans, at least 34 LRR proteins are implicated in diseases. Most LRR domains consist of 2-45 leucine-rich repeats, with each repeat about 20-30 residues long. Structurally, LRR domains adopt an arc or horseshoe shape, with the concave face consisting of parallel β-strands and the convex face representing a more variable region of secondary structures including helices. Apart from the TLRs and NLRs, most of the 375 human LRR proteins remain uncharacterized functionally. We incorporated computational and functional analyses to facilitate multifaceted insights into human LRR proteins and outline a few approaches here. 相似文献
11.
Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand- activated PRRs and initiate pattern -triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants. 相似文献
12.
Signalling C‐type lectin receptors (CLRs) are crucial in shaping the immune response to fungal pathogens, but comparably little is known about the role of these receptors in bacterial, viral and parasitic infections. CLRs have many diverse functions depending on the signalling motifs in their cytoplasmic domains, and can induce endocytic, phagocytic, antimicrobial, pro‐inflammatory or anti‐inflammatory responses which are either protective or not during an infection. Understanding the role of CLRs in shaping anti‐microbial immunity offers great potential for the future development of therapeutics for disease intervention. In this review we will focus on the recognition of bacterial, viral and parasitic pathogens by CLRs, and how these receptors influence the outcome of infection. We will also provide a brief update on the role of CLRs in antifungal immunity. 相似文献
13.
Antiviral signaling through pattern recognition receptors 总被引:10,自引:0,他引:10
Viral infection is detected by the host innate immune system. Innate immune cells such as dendritic cells and macrophages detect nucleic acids derived from viruses through pattern recognition receptors (PRRs). Viral recognition by PRRs initiates the activation of signaling pathways that lead to production of type I interferon and inflammatory cytokines, which are important for the elimination of viruses. Two types of PRRs that recognize viral nucleic acids, Toll-like receptors (TLR) and RIG-I-like RNA helicases (RLH), have been identified. Of the TLRs, TLR3 recognizes viral double-stranded (ds) RNA, TLR7 and human TLR8 identify viral single-stranded (ss) RNA and TLR9 detects viral DNA. TLRs are located in endosomal compartments, whereas RLH are present in the cytoplasm where they detect viral dsRNA or ssRNA. Here we review the role of TLRs and RLHs in the antiviral innate immune response. 相似文献
14.
Important contributions to the field of anion sensing include electrochemical lipophilic uranyl salophene receptors incorporated into membranes that act as fluoride-selective potentiometric microsensors. A promising optical-based sensor, selective for cyclic AMP, involves a preorganized, molecularly imprinted polymer employing an intrinsic fluorophore. Competition methods using ensembles of recognition units and external indicators have been used to sense citrate in highly competitive media and micromolar concentrations of inositol(tris)phosphate in water. In addition, DNA dendrimers immobilized on a quartz-crystal microbalance acted as an elegant biosensor for Cryptosporidium DNA. These designs display the varied methods of anion detection currently being pursued. 相似文献
15.
先天性免疫监视机制的核心是通过模式识别受体(pattern recognition receptors,PRRs)识别病毒分子诱导抗病毒防御,使宿主免受感染。PRRs表达在不同类型细胞的不同细胞区室,包括细胞膜、内体膜、溶酶体膜和胞质。病毒进入细胞区室后将被一个或多个模式识别受体所识别并激活机体的免疫反应。主要对细胞质内模式识别受体视黄酸诱导基因I样受体(retinoic acid-inducible gene I(RIG-I)-like receptors,RLRs)、核苷酸结合寡聚化结构域样受体(nucleotide-binding oligomerization domain(NOD)-like receptors,NLRs)、DEXDc螺旋酶受体(DLRs)及最近发现的DNA模式识别分子——DAI(DNA-dependent activator of interferonregulatory factors)识别病毒核酸并诱导I型干扰素产生的分子机制作一综述。 相似文献
16.
Innate immunity via Toll-like receptors and Nod proteins 总被引:10,自引:0,他引:10
Host defense against microbes requires the development of an efficient immune response aimed to eradicate the source of infection. Through the expression of a battery of germ-line encoded receptors, including the Toll-like receptors and Nod proteins, the innate immune system, which is a prerequisite to the adaptive immune response, detects microbial motifs and initiates pro-inflammatory signaling. Current research into innate immune function focuses on the nature of the ligands detected by this system, the cell signaling that occurs downstream of receptor activation and finally, how these signals culminate into a tailored adaptive immune response directed to eradicate a specific infection. 相似文献
17.
Molecular mapping of genes for race-specific overall resistance to stripe rust in wheat cultivar Express 总被引:1,自引:0,他引:1
Lin F Chen XM 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2008,116(6):797-806
‘Express’, a hard red spring wheat cultivar that has been widely grown in the western United States, is used to differentiate
races of Puccinia striiformis f. sp. tritici, the causal fungal pathogen of wheat stripe rust. To identify genes conferring race-specific, overall resistance to stripe
rust, Express was crossed with ‘Avocet S’. The parents and F1, F2, F3 and F5 populations were tested with races PST-1, PST-21, PST-43, and PST-45 of P. striiformis f. sp. tritici in the seedling stage under controlled greenhouse conditions. Two dominant genes for resistance to stripe rust were identified,
one conferring resistance to PST-1 and PST-21, and the other conferring resistance to all four races. Linkage groups were
constructed for the resistance genes using 146 F5 lines to establish resistance gene analog and chromosome-specific simple sequence repeat marker polymorphisms. The gene for
resistance to races PST-1 and PST-21 was mapped on the long arm of chromosome 1B, and that conferring resistance to all four
races was mapped on the long arm of chromosome 5B. We temporarily designate the gene on 1BL as YrExp1 and the gene on 5BL as YrExp2. Polymorphism of at least one of the two markers flanking YrExp2 was detected in 91% of the 44 tested wheat genotypes, suggesting that they would be useful in marker-assisted selection for
combining the gene with other resistance genes into many other wheat cultivars. Knowledge of these genes will be useful to
understand recent virulence changes in the pathogen populations. 相似文献
18.
Plants have evolved multiple layers of defense against various pathogens in the environment. Receptor-like kinases/proteins
(RLKs/RLPs) are on the front lines of the battle between plants and pathogens since they are present at the plasma membrane
and perceive signature molecules from either the invading pathogen or damaged plant tissue. With a few notable exceptions,
most RLKs/RLPs are positive regulators of plant innate immunity. In this review, we summarize recently discovered RLKs/RLPs
that are involved in plant defense responses against various classes of pathogens.We also describe what is currently known
about the mechanisms of RLK-mediated initiation of signaling via protein-protein interactions and phosphorylation. 相似文献
19.
The design of proteins and peptides as molecular receptors is a rapidly growing area of research. Two primary approaches have been utilized, involving the minimization of known protein binding motifs or the de novo design of binding pockets within well-folded protein structures. These approaches are complementary and help define the minimum requirements necessary for biomolecular recognition. Recent advances in this area include the design of cavities within helix bundles for the binding of anesthetics, the design of beta-hairpins for the recognition of nucleotides and oligonucleotides, the redesign of protein binding sites for unique ligands, and the design of mini-proteins via protein grafting for the recognition of proteins and DNA. These advances provide exciting new opportunities to develop novel biosensors, de novo designed catalysts, exogenously triggered synthetic signal transduction cascades, and novel approaches to therapeutic treatments. 相似文献
20.
A protein domain (Toll and Interleukin-1 receptor [TIR]-like) with homology to animal TIRs mediates immune signaling in prokaryotes and eukaryotes. Here, we present an overview of TIR evolution and the molecular versatility of TIR domains in different protein architectures for host protection against microbial attack. Plant TIR-based signaling emerges as being central to the potentiation and effectiveness of host defenses triggered by intracellular and cell-surface immune receptors. Equally relevant for plant fitness are mechanisms that limit potent TIR signaling in healthy tissues but maintain preparedness for infection. We propose that seed plants evolved a specialized protein module to selectively translate TIR enzymatic activities to defense outputs, overlaying a more general function of TIRs.Plants have evolved specialized protein modules to connect TIR domain signaling to Ca2+ influx and mount effective defense responses. 相似文献