首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Intercellular contacts between adjacent cells migrating over each other are important in many cellular processes. However, it has been difficult to visualize and identify dynamic intercellular adhesions between migrating cells in situ. METHODS: Two fluorescent membrane dyes, PKH2 and PKH26 for staining HT1080 and hematopoietic cells and cell lines, and an automated fluorescence microscopy system were used to monitor intercellular adhesion. RESULTS: Cellular extensions connecting two or more adjacent cells were visualized, showing the intercellular adhesion between migrating cells for minutes and up to hours. After cells adhered to each other, followed by cell migration in different directions, cellular extensions were dragged from the pivotal contact points in different focal planes. CD34(+)-enriched mobilized peripheral blood cells and six hematopoietic cell lines showed intercellular connections in cocultures with HT1080. However, the frequency of intercellular connections was variable in different cocultures. A cell density of about 3.1 x 10(4) cells/cm(2) for both cell lines in cocultures provided an adequate number of cells in each field of view, showing up to four intercellular connections per 100 total cells plated. DISCUSSION: The tools derived from this study will open new areas of investigation for understanding the mechanism of the intercellular adhesion process.  相似文献   

2.
A neuronal network model of epilepsy is investigated. The network is described in terms of differential delay equations in which strong depolarization of any unit in the ensemble results in spike inactivation and the attenuation of that cell's output. It can be shown that homogeneous oscillations with the qualitative features of epileptic seizures, including the progression from tonic to clonic firing patterns, appear when a highly depolarized homogeneous steady state becomes unstable. Stability calculations and the study of a simplified model that is solved analytically point to hyperexcitation as a critical determinant of epileptic activity. Spatially inhomogeneous solutions were studied in three types of connective topologies, i) uniformly densely connected networks, ii) densely connected networks containing a number of cells (microfoci) with pathologically strong connections to each other and to other normal cells, and iii) sparsely connected networks in which the strength of connections falls off as a function of the physical distance separating the cells. Homogeneous epileptic solutions remain stable to spatial perturbations in the first two types of topology. Type iii) may however give rise to a variety of spatiotemporal patterns, including travelling waves and chaotic behaviour. It is suggested that such inhomogeneous patterns may occur in the early stages of a seizure.  相似文献   

3.
We model the functioning of different wiring schemes in visual projections using artificial neural networks and so speculate on selective factors underlying taxonomic variation in neural architecture. We model the high connective overlap of vertebrates (where networks have a dense mesh of connections) and the less overlapping, more modular architecture of arthropods. We also consider natural variation in these basic wiring schemes. Generally, arthropod networks are as efficient or more efficient in functioning compared to vertebrate networks. They do not show the confusion effect (decreasing targeting accuracy with increasing input group size), and they train as well or better. Arthropod networks are, however, generally poorer at reconstructing novel inputs. The ability of vertebrate networks to effectively process novel stimuli could promote behavioral sophistication and drive the evolution of vertebrate wiring schemes. Vertebrate networks with less connective overlap have, surprisingly, similar or superior properties compared to those with high connective overlap. Thus, the partial connective overlap seen in real vertebrate visual projections may be an optimal, evolved solution. Arthropod networks with and without whole-cell neural connections within neural layers have similar properties. This indicates that neural connections mediated by offshoots of single cells (dendrites) may be fundamental to generating the confusion effect.  相似文献   

4.
Being able to infer one way direct connections in an oscillatory network such as the suprachiastmatic nucleus (SCN) of the mammalian brain using time series data is difficult but crucial to understanding network dynamics. Although techniques have been developed for inferring networks from time series data, there have been no attempts to adapt these techniques to infer directional connections in oscillatory time series, while accurately distinguishing between direct and indirect connections. In this paper an adaptation of Granger Causality is proposed that allows for inference of circadian networks and oscillatory networks in general called Adaptive Frequency Granger Causality (AFGC). Additionally, an extension of this method is proposed to infer networks with large numbers of cells called LASSO AFGC. The method was validated using simulated data from several different networks. For the smaller networks the method was able to identify all one way direct connections without identifying connections that were not present. For larger networks of up to twenty cells the method shows excellent performance in identifying true and false connections; this is quantified by an area-under-the-curve (AUC) 96.88%. We note that this method like other Granger Causality-based methods, is based on the detection of high frequency signals propagating between cell traces. Thus it requires a relatively high sampling rate and a network that can propagate high frequency signals.  相似文献   

5.
The reaggregation process was studied in dissociated blastula cells from sea urchin embryos to characterize the degree of differentiation among them. During the reaggregation process at least four different cell types appear: (a) cells that remain round, do not reaggregate, and can differentiate into pigment cells; (b) epithelial cells that spread on the substratum and join together to form epithelial sheets, which then develop cilia and round up to form blastulalike structures; (c) spindle-shaped cells that send out protoplasmic extensions over long distances to make contact with other cells; (d) single polyfilamentous cells, their cytoplasm extending into filaments and forming a branched network. The polyfilamentous cells also form syncytia and can show regional differentiation into pigment. Partial success in separating the above types of cells has shown that some of them differ intrinsically. The differences are reflected in morphological differentiation in differential response to calcium, and in amount of hyalin produced.  相似文献   

6.
7.

Objectives

To test a 3D approach for neural network formation, alignment, and patterning that is reproducible and sufficiently stable to allow for easy manipulation.

Results

A novel cell culture system was designed by engineering a method for the directional growth of neurons. This uses NG108-15 neuroblastoma x glioma hybrid cells cultured on suspended and aligned electrospun fibers. These fiber networks improved cellular directionality, with alignment angle standard deviations significantly lower on fibers than on regular culture surfaces. Morphological studies found nuclear aspect ratios and cell projection lengths to be unchanged, indicating that cells maintained neural morphology while growing on fibers and forming a 3D network. Furthermore, fibronectin-coated fibers enhanced neurite extensions for all investigated time points. Differentiated neurons exhibited significant increases in average neurite lengths 96 h post plating, and formed neurite extensions parallel to suspended fibers, as visualized through scanning electron microscopy.

Conclusions

The developed model has the potential to serve as the basis for advanced 3D studies, providing an original approach to neural network patterning and setting the groundwork for further investigations into functionality.
  相似文献   

8.
Detergent-extracted, critical point dried chicken myoblasts at early stages of development in tissue culture were observed by electron microscopy. It was found that the organization of filaments within these cells changes significantly during development. A particular specialization of the cellular filament framework is the formation of microprocesses; long extensions of the cellular filament system. These microprocesses appear to be involved in cell-to-cell contact. The filaments of these processes appear to integrate with the filament system of a contacted cell, and possibly transmit tension from one cell to another. The role of these structures in effecting muscle differentiation by forming cytoplasmic connections and the implications for muscle gene expression are discussed.  相似文献   

9.
By plotting cross-correlation histograms differences were found in interaction of conjectural small "interneurons" and large principal cells of the central and basal amygdalar nuclei in negative emotional situations. The network activity of "nterneurons" was higher than in principal cells. "Interneurons" more frequently had excitatory and inhibitory input or output connections with neighbouring cells, latency of their connections with other cells was smaller than in principal neurons. Interaction of "interneurons" and principal cells differed in animals with active and passive behavioural strategy in negative emotional situations. As compared to active animals, in passive rabbits inhibitory connections to "interneurons" from other cells occurred more frequently, excitatory or inhibitory connections from "interneurons" to principal cells appeared more rare.  相似文献   

10.
Quantitative conceptual tools dealing with control and regulation of cellular processes have been mostly developed for and applied to the pathways of intermediary metabolism. Yet, cellular processes are organized in different levels, metabolism forming the lowest level in a cascade of processes. Well-known examples are the DNA-mRNA-enzyme-metabolism cascade and the signal transduction cascades consisting of covalent modification cycles. The reaction network that constitutes each level can be viewed as a "module" in which reactions are linked by mass transfer. Although in principle all of these cellular modules are ultimately linked by mass transfer, in practice they can often be regarded as "isolated" from each other in terms of mass transfer. Here modules can interact with each other only by means of regulatory or catalytic effects-a chemical species in one module may affect the rate of a reaction in another module by binding to an enzyme or transport system or by acting as a catalyst. This paper seeks to answer two questions about the control and regulation of such multi-level reaction networks: (i) How can the control properties of the system as a whole be expressed in terms of the control properties of individual modules and the effects between modules? (ii) How do the control properties of a module in its isolated state change when it is embedded in the whole system through its connections with the other modules? In order to answer these questions a quantitative theoretical framework is developed and applied to systems containing two, three or four fully interacting modules; it is shown how it can be extended in principle to n modules. This newly developed theory therefore makes it possible to quantitatively dissect intermodular, internal and external regulation in multi-level systems.  相似文献   

11.
The cellular contact sites between the full-grown oocyte of Xenopus laevis and the surface extensions of surrounding follicles cells were analysed by electron microscopy of ultrathin sections, freeze-fracture replicas and critical point-dried specimens. Evidence is given for the presence of clusters of intramembranous particles (IMPs) at the P-face which represent gap junctions in diverse forms. Most common are maculae (phi 0.2-0.5 micron) of densely packed IMPs (phi 12 +/- 2 nm) which represent focal gap junctions generally found at the tips of follicle cell surface extensions. Inside many maculae an IMP-free area occurs which appears as a smooth disk (phi 70-80 nm) at both fracture faces. Occasionally a few IMPs are trapped within the smooth disks. Beside the maculae, networks of arrayed IMPs occur that enclose several smooth disks. These latter gap junctions probably are more frequent in side-to-side contacts between surface extensions of the oocyte and the follicle cells. The possible function of these IMP networks is discussed as being related to similar membrane specializations in excitable cells. In addition, indirect evidence was found that the extensions of the follicle cells transport yolky material.  相似文献   

12.
The development of neuronal circuits has been advanced greatly by the use of imaging techniques that reveal the activity of neurons during the period when they are constructing synapses and forming circuits. This review focuses on experiments performed in leech embryos to characterize the development of a neuronal circuit that produces a simple segmental behavior called "local bending." The experiments combined electrophysiology, anatomy, and FRET-based voltage-sensitive dyes (VSDs). The VSDs offered two major advantages in these experiments: they allowed us to record simultaneously the activity of many neurons, and unlike other imaging techniques, they revealed inhibition as well as excitation. The results indicated that connections within the circuit are formed in a predictable sequence: initially neurons in the circuit are connected by electrical synapses, forming a network that itself generates an embryonic behavior and prefigures the adult circuit; later chemical synapses, including inhibitory connections, appear, "sculpting" the circuit to generate a different, mature behavior. In this developmental process, some of the electrical connections are completely replaced by chemical synapses, others are maintained into adulthood, and still others persist and share their targets with chemical synaptic connections.  相似文献   

13.
R. E. Crang  D. G. Pechak 《Protoplasma》1978,96(3-4):225-234
Summary Cultures ofAureobasidium pullulans were grown on a defined medium which enhanced hyphal growth over yeast-type growth. The hyphae at 24 hours postinoculation were prepared for high voltage electron microscopy (HVEM). Serial thick sections (0.5 m) were observed by means of HVEM operating at 1,000 kV. Tracings of cell walls and major cytoplasmic organelles were made on clear acetate sheets which were subsequently spaced at appropriate vertical heights in order to facilitate cell reconstruction. It was found that the majority of mitochondrial profiles were interconnected forming a highly reticulate mitochondrial network. No cells were found to contain a single mitochondrion, but several large mitochondrial networks were consistently located along the cell periphery and around nuclei and with only a few extensions into the central region of the cell.To a great extent vacuoles were connected by channels. A few individual small isolated vacuoles were also present. The vacuole system, unlike that of the mitochondria, was prominently located in the central region of the cell. Also located in the central region were from three to seven spherical nuclei which showed no indication of interconnections.  相似文献   

14.
Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of > 100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut.  相似文献   

15.
Dragoi G  Harris KD  Buzsáki G 《Neuron》2003,39(5):843-853
In the brain, information is encoded by the firing patterns of neuronal ensembles and the strength of synaptic connections between individual neurons. We report here that representation of the environment by "place" cells is altered by changing synaptic weights within hippocampal networks. Long-term potentiation (LTP) of intrinsic hippocampal pathways abolished existing place fields, created new place fields, and rearranged the temporal relationship within the affected population. The effect of LTP on neuron discharge was rate and context dependent. The LTP-induced "remapping" occurred without affecting the global firing rate of the network. The findings support the view that learned place representation can be accomplished by LTP-like synaptic plasticity within intrahippocampal networks.  相似文献   

16.
Bagrow JP  Lin YR 《PloS one》2012,7(5):e37676
The individual movements of large numbers of people are important in many contexts, from urban planning to disease spreading. Datasets that capture human mobility are now available and many interesting features have been discovered, including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows of mobility--the sets and sequences of visited locations--have not been well studied. We show that individual mobility is dominated by small groups of frequently visited, dynamically close locations, forming primary "habitats" capturing typical daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel. Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may influence processes such as information spreading and revealing new connections between human mobility and social networks.  相似文献   

17.
Here we investigate the synaptic connectivity of the giant dopamine containing neurone (RPeDI) of Lymnaea stagnalis during the winter months, in wild and laboratory bred animals. RPeD1 is one of the three neurones forming the respiratory central pattern generator (CPG) in Lymnaea and initiates ventilation under normal circumstances. Many of the follower cells of RPeD1 are ventilatory motor neurones. The connections of RPeD1 to its follower cells were investigated using standard intracellular recording techniques and dopamine was applied to the follower cells using a puffer pipette. During February and early March, RPeD1 was functionally disconnected from its follower cells, but connections reappeared towards the end of March. Most functionally disconnected cells failed to respond to applied dopamine, consistent with the hypothesis that there is down regulation of dopamine receptors in the follower cells of RPeD1 in the winter months. Behaviourally, Lymnaea that survive the winter, are not active at this time and do not indulge in lung ventilation, but stay quiescent. Thus functional disconnection of neurones from the CPG may be either a cause or a consequence of this change in behaviour.  相似文献   

18.
Maina JN 《Tissue & cell》2004,36(5):307-322
In the embryonic lung of the domestic fowl, Gallus gallus variant domesticus, hematogenetic and vasculogenetic cells become ultrastructurally clear from day 4 of development. In the former group of cells, filopodial extensions coalesce, cytoplasm thickens, and accumulating hemoglobin displaces the nucleus peripherally while in the latter, conspicuous filopodial extensions and large nuclei develop as the cells assume a rather stellate appearance. From day 5, erythrocytes and granular leukocytes begin forming from cytoarchitecturally cognate hematogenetic cells. The cells become distinguishable when hemoglobin starts to accumulate in the erythroblasts and electron dense bodies form in the leukoblasts. Vasculogenesis begins from day 7 in different areas of the developing lung: erthrocytes (but not granular leukocytes) appear to attract committed vasculogenetic cells (angioblasts) that form an endothelial lining and vessel wall. Arrangement of angioblasts around forming blood vessels sets the direction along which the vessels sprout (angiogenesis). In some areas of the developing lung, through what seems like an inductive erythropoietic process, arcades of erythrocytes organize. Once endothelial cells surround such continuities, discrete vascular units organize. By day 10, the major parts of the in-built (intrinsic) pulmonary vasculature are assembled. Complete pulmonary circulation (i.e., through the exchange tissue) is not established until after day 18 when the blood capillaries start to develop. Since the precursory erythrocytes do not have a respiratory role, it is imperative that de novo erythropoiesis is essential for vasculogenesis. Diffuse (fragmentary) development and subsequent piecemeal assembly of the pulmonary vascular system may explicate the fabrication of a complex circulatory architecture that grants cross-current, counter-current, and multicapillary serial arterialization designs in the exchange tissue of the avian lung. The exceptional respiratory efficiency of the avian lung is largely attributable to the geometries (physical interfacing) between the bronchial and vascular elements at different levels of morphological organization.  相似文献   

19.
Summary The cytoskeleton of Trichoplax adhaerens fiber cells was studied after chemical fixation, freeze-substitution, lysis of attached cells with nonionic detergents and by immunofluorescence. Cytoskeletal elements present in the cell bodies and reaching into the extensions include microtubules, intermediate filaments, 6–7 nm and 2–3 nm microfilaments. The latter seem to interconnect other cytoskeletal elements. Actin-like microfilaments are found both as networks and parallel strands. Immunofluorescence with antiactin shows the presence of actin in the cell body, underneath the plasmalemma and within the extensions. Both the results of immunofluorescence and the identification of 6–7 nm actin-like microfilaments support the concept of contractility of the fiber cells as the cause of the rapid shape changes of Trichoplax. Anti-tubulin fluorescence corresponds to the location of microtubules in the extensions as well as the cell bodies of the fiber cells. The extensions are withdrawn upon depolymerization of the microtubules by colchicine.  相似文献   

20.
A typical property of isolated cultured neuronal networks of dissociated rat cortical cells is synchronized spiking, called bursting, starting about one week after plating, when the dissociated cells have sufficiently sent out their neurites and formed enough synaptic connections. This paper is the third in a series of three on simulation models of cultured networks. Our two previous studies [26], [27] have shown that random recurrent network activity models generate intra- and inter-bursting patterns similar to experimental data. The networks were noise or pacemaker-driven and had Izhikevich-neuronal elements with only short-term plastic (STP) synapses (so, no long-term potentiation, LTP, or depression, LTD, was included). However, elevated pre-phases (burst leaders) and after-phases of burst main shapes, that usually arise during the development of the network, were not yet simulated in sufficient detail. This lack of detail may be due to the fact that the random models completely missed network topology .and a growth model. Therefore, the present paper adds, for the first time, a growth model to the activity model, to give the network a time dependent topology and to explain burst shapes in more detail. Again, without LTP or LTD mechanisms. The integrated growth-activity model yielded realistic bursting patterns. The automatic adjustment of various mutually interdependent network parameters is one of the major advantages of our current approach. Spatio-temporal bursting activity was validated against experiment. Depending on network size, wave reverberation mechanisms were seen along the network boundaries, which may explain the generation of phases of elevated firing before and after the main phase of the burst shape.In summary, the results show that adding topology and growth explain burst shapes in great detail and suggest that young networks still lack/do not need LTP or LTD mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号