共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete primary structure of the allosteric L-lactate dehydrogenase from Lactobacillus casei 总被引:6,自引:0,他引:6
The polypeptide chain of the allosteric L-lactate dehydrogenase (EC 1.1.1.27) of Lactobacillus casei consists of 325 amino acid residues. Despite the strikingly different enzymatic characteristics of the allosteric L-lactate dehydrogenase of L. casei and of the non-allosteric vertebrate enzymes, the sequence of the allosteric enzyme shows a distinct homology with that of the non-allosteric vertebrate enzymes (average identity: 37%). An especially high sequence homology can be identified within the active center (average identity: 70%). A clear deviation of the L. casei enzyme from the vertebrate enzyme is the lack of the first 12 amino acid residues at the N terminus and an additional 7 amino acid residues at the C terminus. The localization of the binding site of the allosteric effector D-fructose 1,6-bisphosphate and pH and effector-induced changes of the spectroscopic properties are discussed on the basis of the primary structure. 相似文献
2.
为提高L-苯乳酸(L-phenyllactic acid,L-PLA)的生产效率,以干酪乳杆菌Lactobacillus casei L-乳酸脱氢酶突变体L-Lc LDH1Q88A/I229A为研究对象,实现其在毕赤酵母Pichia pastoris GS115中的分泌表达,并与葡萄糖脱氢酶SyGDH偶联,构建并优化体外辅酶循环体系,不对称还原苯丙酮酸(Phenylpyruvate,PPA)制备L-PLA。结果显示,毕赤酵母重组酶re Lc LDH1Q88A/I229A的表观分子量为36.8 kDa,比活力为270.5 U/mg,是原酶的42.9倍。在40℃,初始pH为5.0,底物PPA、辅酶NAD+和葡萄糖浓度分别为100、2和120mmol/L,SyGDH和re Lc LDH1Q88A/I229A添加量分别为1和10U/mL的最优条件下,L-PLA的产率可达99.8%,对映体过量(ee)值>99.9%,时空产率和平均转化率分别高达9.5 g/(L·h)和257.0 g/(g·h)。结果表明,re Lc LDH1Q88A/I229A在不对称还原PPA制备L-PLA中生产效率高,... 相似文献
3.
【背景】光学纯L-苯乳酸是一种天然防腐剂,也是一种高附加值的手性分子,在食品、制药和材料等领域有广阔的应用前景。本实验室已发现来源于Lactobacillus casei CICIM B1192的NADH依赖型L-乳酸脱氢酶(L-LcLDH)可不对称还原苯丙酮酸制备L-苯乳酸,但其活性较低。为提高L-LcLDH催化苯丙酮酸的催化效率,构建了一个单突变体L-LcLDH~(Q88R),其催化效率kcat/Km是L-LcLDH的4.9倍。【目的】为进一步提高L-LcLDH~(Q88R)催化苯丙酮酸的催化效率,采用饱和突变技术将位于L-LcLDH~(Q88R)底物结合口袋附近的氨基酸残基Ile~(229)随机替换为其他氨基酸,以获得活性更高的优良突变体。【方法】以重组表达质粒p ET-22b-LcldhQ88R为模板,采用全质粒PCR技术对L-LcLDH~(Q88R)基因(LcldhQ88R)中编码Ile~(229)的密码子实施饱和突变,构建突变转化子文库。以催化苯丙酮酸的活性为指标,从文库中筛选出优良的突变转化子。【结果】突变转化子(Escherichia coli/Lcldh~(Q88R/I229Q))表达出一种由Arg和Gln分别替换了Gln88和Ile~(229)的双突变体L-LcLDH~(Q88R/I229Q)。重组表达产物L-LcLDH~(Q88R/I229Q)的酶学性质分析表明:L-LcLDH~(Q88R/I229Q)的比活性是L-LcLDH的18.5倍,是L-LcLDH~(Q88R)的2.3倍;其催化效率分别为后两者的6.8倍和1.4倍。L-LcLDH突变前后的温度和pH特性改变不大。根据分子对接结果推测出,双突变Q88R/I229Q导致L-LcLDH的底物结合口袋的入口变大和构型的变化可能对其催化活性的提高发挥了重要作用。【结论】双突变Q88R/I229Q显著提高了L-LcLDH的活性和催化效率,使得L-LcLDH~(Q88R/I229Q)在不对称还原苯丙酮酸制备L-苯乳酸中成为有潜力的工具酶。 相似文献
4.
Manfred Buehner Hans-Jürgen Hecht Reinhard Hensel Ulrich Mayr 《Journal of molecular biology》1982,162(4):819-838
The allosteric l-lactate dehydrogenase from Lactobacillus casei has been crystallized in its complex with the activators fructose-1,6-diphosphate and Co2+. The enzyme crystallizes in space group C2 with six tetramers in the unit cell. At very low resolution, 00l reflexions are absent for l ≠ 3n. The orientation of the molecular axes has been determined using the rotation function. All tetramers in the unit cell exhibit excellent 222 symmetry, and the overall arrangement resembles the packing that would be expected in the higher symmetry space group P3121. Comparison with the apo-enzyme structure of M4-lactate dehydrogenase from dogfish indicates high structural similarity between these enzymes and allowed us to identify the molecular axes of L. caseil-lactate dehydrogenase in terms of the “standard” molecular co-ordinate system P, Q, R. The similarity of both enzymes is good enough to allow the structure determination of L. caseil-lactate dehydrogenase by molecular replacement using the dogfish enzyme as a model.Sequencing results show that L. caseil-lactate dehydrogenase is lacking the N-terminal arm of vertebrate lactate dehydrogenases and electron density maps at 5 Å resolution indicate that ligands might possibly bind in the region of the missing arm. The active site loop is involved in intermolecular contacts and its structure might be different from both, apo- and ternary dogfish l-lactate dehydrogenase. 相似文献
5.
In Lactobacillus plantarum non-allosteric L-lactate dehydrogenase (L-LDH), the highly conserved His188 residue, which is involved in the binding of an allosteric effector, fructose 1,6-bisphosphate [Fru(1,6)P2], in allosteric L-LDH is uniquely substituted by an Asp. The mutant L. plantarum L-LDH, in which Asp188 is replaced by a His, showed essentially the same Fru(1,6)P2-independent catalytic activity as the wild-type enzyme, except that the Km and Vmax values were slightly decreased. However, the addition of Fru(1,6)P2 induced significant thermostabilization of the mutant enzyme, as in the case of many allosteric L-LDHs, while Fru(1,6)P2 showed no significant effect on the stability of the wild-type enzyme, indicating that only the single-point mutation, G-->C, sufficiently induces the Fru(1,6)P2-binding ability of L. plantarum L-LDH. The mutant enzyme showed higher thermostability than the wild-type enzyme in the presence of Fru(1,6)P2. In the absence of Fru(1,6)P2, on the other hand, the mutant enzyme was more labile below 65 degrees C but more stable above 70 degrees C. 相似文献
6.
Kazuhito Arai Toshihiro Ishimitsu Shinya Fushinobu Hiroyuki Uchikoba Hiroshi Matsuzawa Hayao Taguchi 《Proteins》2010,78(3):681-694
Lactobacillus casei L ‐lactate dehydrogenase (LCLDH) is activated through the homotropic and heterotropic activation effects of pyruvate and fructose 1,6‐bisphosphate (FBP), respectively, and exhibits unusually high pH‐dependence in the allosteric effects of these ligands. The active (R) and inactive (T) state structures of unliganded LCLDH were determined at 2.5 and 2.6 Å resolution, respectively. In the catalytic site, the structural rearrangements are concerned mostly in switching of the orientation of Arg171 through the flexible intersubunit contact at the Q‐axis subunit interface. The distorted orientation of Arg171 in the T state is stabilized by a unique intra‐helix salt bridge between Arg171 and Glu178, which is in striking contrast to the multiple intersubunit salt bridges in Lactobacillus pentosus nonallosteric L ‐lactate dehydrogenase. In the backbone structure, major structural rearrangements of LCLDH are focused in two mobile regions of the catalytic domain. The two regions form an intersubunit linkage through contact at the P‐axis subunit interface involving Arg185, replacement of which with Gln severely decreases the homotropic and hetertropic activation effects on the enzyme. These two regions form another intersubunit linkage in the Q‐axis related dimer through the rigid NAD‐binding domain, and thus constitute a pivotal frame of the intersubunit linkage for the allosteric motion, which is coupled with the concerted structural change of the four subunits in a tetramer, and of the binding sites for pyruvate and FBP. The unique intersubunit salt bridges, which are observed only in the R state structure, are likely involved in the pH‐dependent allosteric equilibrium. Proteins 2010. © 2009 Wiley‐Liss, Inc. 相似文献
7.
8.
Werner Hummel Horst Schütte Maria-Regina Kula 《Applied microbiology and biotechnology》1985,21(1-2):7-15
Summary The new enzyme d-2-hydroxyisocaproate dehydrogenase (NAD+-dependent) was detected in strains of the genus Lactobacillus and related genera. Straight and branched chain aliphatic as well as aromatic 2-ketocarboxylic acids are stereospecifically reduced to the corresponding d-2-hydroxycarboxylic acids according to the following equation:R-CO-COOH + NADH + H+ R-CHOH-COOH + NAD+
The enzyme is called d-hydroxyisocaproate dehydrogenase by us because 2-ketoisocaproate is the substrate with the lowest KM-value. NAD(H) as a cofactor cannot be replaced by NADP(H). Because of its broad substrate specificity we chose the strain Lactobacillus casei ssp. pseudoplantarum (DSM 20 008) for enzyme production and characterization. d-2-hydroxyisocaproate dehydrogenase could be purified 180-fold starting with 500 g of wet cells.The purification procedure involved liquid-liquid extraction with aqueous two-phase systems and ion-exchange chromatography. At this stage the enzyme has a specific activity of 25 U/mg and can be used for technical applications. Further purification up to a homogeneous protein with a specific activity of 110 U/mg can be achieved by chromatography on Amberlite CG 50 at pH 3.5. Properties important for technical application of the d-HicDH were investigated, especially the substrate specificity and the optimum pH- and temperature ranges for activity and stability of the catalist. 相似文献
9.
10.
11.
Arai K Hishida A Ishiyama M Kamata T Uchikoba H Fushinobu S Matsuzawa H Taguchi H 《Protein engineering》2002,15(1):35-41
Lactobacillus casei allosteric L-lactate dehydrogenase (L-LDH) absolutely requires fructose 1,6-bisphosphate [Fru(1,6)P2] for its catalytic activity under neutral conditions, but exhibits marked catalytic activity in the absence of Fru(1,6)P(2) under acidic conditions through the homotropic activation effect of substrate pyruvate. In this enzyme, a single amino acid replacement, i.e. that of His205 conserved in the Fru(1,6)P(2)-binding site of certain allosteric L-LDHs of lactic acid bacteria with Thr, did not induce a marked loss of the activation effect of Fru(1,6)P(2) or divalent metal ions, which are potent activators that improve the activation function of Fru(1,6)P(2) under neutral conditions. However, this replacement induced a great loss of the Fru(1,6)P(2)-independent activation effect of pyruvate or pyruvate analogs under acidic conditions, consequently indicating an absolute Fru(1,6)P(2) requirement for the enzyme activity. The replacement also induced a significant reduction in the pH-dependent sensitivity of the enzyme to Fru(1,6)P(2), through a slight decrease and increase of the Fru(1,6)P(2) sensitivity under acidic and neutral conditions, respectively, indicating that His205 is also largely involved in the pH-dependent sensitivity of L.casei L-LDH to Fru(1,6)P(2). The role of His205 in the allosteric regulation of the enzyme is discussed on the basis of the known crystal structures of L-LDHs. 相似文献
12.
Affinity labelling of the NADP+-binding site of glucose 6-phosphate dehydrogenase from Candida utilis. 下载免费PDF全文
1. Periodate-oxidized NADP+ inhibits the catalytic activity of glucose 6-phosphate dehydrogenase from Candida utilis, competing with NADP+. 2. Incubation of the enzyme with the coenzyme analogue causes partial reversible inactivation of the enzyme as a result of affinity labelling of the coenzyme-binding site. 3. Some kinetic values of the reaction were calculated. 4. The inactivation can be made irreversible by treatment with NaBH4, which reduces a Schiff base formed between an aldehyde group on the coenzyme analogue and a lysine residue on the enzyme. 5. Complete inactivation can be correlated with the binding of only one inhibitor to each enzyme subunit. 6. The lysine residue involved in the binding of the inhibitor is present at the coenzyme-binding site. 相似文献
13.
L-Lactate dehydrogenase of Thermus caldophilus GK24 was purified from Escherichia coli containing an overexpression plasmid. The enzyme was crystallized from polyethylene glycol 6000 solutions without ligands by the hanging drop vapor diffusion method. Two forms of crystals were obtained. The crystals grown at pH 6.0 were characterized by means of an X-ray diffraction experiment, while those grown at pH 6.5 and 7.0 did not give detectable diffraction spots. The crystals grown at pH 6.0 belonged to monoclinic space group P2(1), the cell dimensions being a = 54.8 A, b = 138.2A, c = 86.1 A, and beta = 93.3 degrees. These crystals diffract to beyond 2.5 A spacing and are stable on X-ray irradiation. 相似文献
14.
Summary A gene for allosteric lactate dehydrogenase (LDH) of Lactobacillus casei ATCC393 was transferred into Bacillus subtilis. The LDH was produced in a growth-associated type, and comprised up to 40 % of the total cellular protein. The maximum specific activity in the transformant was 208 U/mg protein which was approximately 16 times higher than in L. casei or in the previously constructed Escherichia coli transformant. 相似文献
15.
L-Lactate dehydrogenase from Bifidobacterium longum aM101-2 was overexpressed in Escherichia coli and then purified. The enzyme was crystallized from a polyethylene glycol 6000 solution by the hanging drop vapor diffusion method. Crystals grown in the presence of NADH (type II), both NADH and oxamate (type III), and NADH, oxamate, and FBP (type IV) were analyzed. All three crystal forms belong to the orthorhombic system, space group P2(1)2(1)2. The cell dimensions of the type II crystals were a = 106.2 A, b = 131.6 A, and c = 63.8 A. Those of the type III and type IV crystals were a = 106.4 A, b = 131.4 A, and c = 63.8 A. The type III crystals diffract X-rays to beyond 2.5 A spacing. The type II and type III crystals were stable as to X-ray irradiation. 相似文献
16.
Conformation of NAD+ bound to allosteric L-lactate dehydrogenase activated by chemical modification 总被引:1,自引:0,他引:1
S Koide S Yokoyama H Matsuzawa T Miyazawa T Ohta 《The Journal of biological chemistry》1989,264(15):8676-8679
On modification of arginine residues with 2,3-butanedione, the Thermus caldophilus L-lactate dehydrogenase is converted to an activated form that is independent of an allosteric effector, fructose 1,6-bisphosphate (Fru-1,6-P2). The conformation of NAD+ bound to the modified enzyme in the absence of Fru-1,6-P2 was investigated by means of proton NMR, analyzing the time dependence of the transferred nuclear Overhauser effect (TRNOE) and TRNOE action spectra. The inter-proton distances determined on TRNOE analysis indicated that both the nicotinamide riboside moiety and the adenosine moiety of NAD+ were in the anti conformation, the ribose rings being in the C3'-endo form. This conformation was almost the same as that of NAD+ bound to the native enzyme-Fru-1,6-P2 complex, rather than that of NAD+ bound to the free native enzyme. These results suggest that the C3'-endo-anti form of the enzyme-bound NAD+ is essential for the activation of the T. caldophilus L-lactate dehydrogenase. 相似文献
17.
Iodoacetyldiethylstilbestrol was used as an affinity label to alkylate the estrogen binding site of bovine liver glutamate dehydrogenase. This reagent induced inactivation and alkylation of the enzyme. The non-alkylating analogues diethylstilbestrol and estradiol protected the enzyme towards alkylation. The apparent constant of alkylation was of the order of magnitude of I50 for the allosteric inhibition by diethylstilbestrol. These two results suggest that alkylation occurred at the estrogen binding site. The stoichiometry of alkylation was between one and two, depending on the experimental conditions. When the stoichiometry was found to be less than or equal to 1, 90% of the label was bound on cystein residues, 70% of which was carried by cysteine-89, a cysteine residue which is known to be inacessible to iodoacetamide in phosphate buffer in the same conditions of temperature and pH. 相似文献
18.